
Proposal

Authorized and redacted by Southeast University on 20170706 as an example for ASC

I. A brief background description of the university’s or the

department’s supercomputing activities (5 points)

1.1. Supercomputing-related hardware and software platforms

Today, the data deluge is impacting scientists in both research fields and industrial

applications in a very profound way. In order to address this challenge, we establish a high

performance computational (HPC) cluster. The HPC cluster is equipped with more than 300

cores, 3.3 TB memory and 144 TB storage with Lustre (parallel) file system. The peak

performance of the whole HPC cluster is 13 TFlops. Our HPC cluster consists of a number of

batch nodes and a small number of special purpose nodes. For the batch nodes we

differentiate between so-called thin nodes, fat nodes, and GPU nodes. Ten thin nodes

constitute the majority of the available batch nodes. GPU nodes use GPGPUs to accelerate

the computations. Fat nodes have more physical cores (96) and larger memory (2 TB) than

the thin nodes, which is especially suitable for analysing large scale of sequencing data.

Special node is so-called service node. The service node provides login service and

administrates the whole HPC cluster. Every computing node has a Mellanox 56 Gb/s

InfiniBand adapter providing 4 × FDR (Fourteen Data Rate) resulting in 56 Gbit/s inter-node

bandwidth, with an inter-island latency of 3 µs. All nodes within HPC cluster connected by

1000 Mb interconnect. Each node runs under the same operating system (a Linux

distribution compatible with Red Hat Enterprise Linux). The HPC cluster also set up with a

parallel computational environment.

The detailed information of the hardware and software configuration of our HPC cluster is

listed in Table 1 and Table 2, respectively.

Table 1. Summary of hardware configuration of our HPC cluster

Item Name Configuration Number

Login and
management
node

Inspur
NF5280M4

CPU: Intel Xeon E5-2620v3 x 2, 2.4Ghz, 6
cores

1

Memory: 8G, DDR4, 2133Mhz

Hard disk: 1.5 TB SATA

Compute
node

Inspur
NX5440M4

CPU: Intel Xeon E5-2650v3 x 2, 2.3Ghz, 10
cores

10

Memory: 16G, DDR4, 2133Mhz

Hard disk: 300G SSD

GPU node Inspur
NF5280M4

CPU: Intel Xeon E5-2620v3 x 2, 2.4Ghz, 6
cores

1

Memory: 8G, DDR4, 2133Mhz

Nvidia K40M GPU

Hard disk: 1.5 TB SATA

8-route fat
node

Inspur TS860 CPU: Intel Xeon E7-8850v2 x 8, 2.3Ghz, 12
cores

1

Memory: 16G, DDR4, 2133Mhz X 128

Nvidia K40M GPU

Hard disk: 2.4 TB SAS

Storage node 4U data node CPU: Intel Xeon E5-2620v2 x 2, 2.1Ghz, 6
cores

2

4TB SATA X 18

Connection FDR InfiniBand Mellanox ConnectX-3 HCA card,
single port QSFP, FDR IB

1

GbE switch 10/100/1000Mb/s, 24 ports Ethernet
switch

Gigabit CAT6
cables

CAT6 copper cable, blue, 3m

InfiniBand cable InfiniBand FDR optical fiber cable, QSFP
port, cooperating with the InfiniBand
switch for use

Table 2. Summary of software configuration of our HPC cluster

Item Name Configuration

Operating
system

Linux Red Hat Enterprise Linux

Cluster
management
software

Inspur ClusterEngine v3.3

Application
development
environment

parallel
computational
environment

MPICH

MVAPICH2

OpenMPI

OpenACC

Intel compiler, support C/C++ Fortran

GNU compiler, support C/C++ Fortran

CUDA

Mathematical library (MKL, ACML, BLAS,
LAPACK, Scalapack, FFTW)

Application
software

Protein autodocking, docking

Genomics BWA, Bowtie, TopHat, GATK

1.2. Supercomputing-related courses, trainings, and interest groups

Our supercomputing-related trainings are carried out by the joint education program

between Institute of Life Sciences and Chien-Shiung Wu College (Honors) in Southeast

University.

Institute of Life Sciences is established as a direct department of Southeast University to

commit to a high level of scientific research when Southeast University implies a leapfrog

development strategy implementation. Institute of Life Sciences contains “Key Laboratory of

Developmental Genes and Human Diseases, Ministry of Education”, Biology doctoral

research centre, first level subject master’s degree of Biology and second level subject

doctoral degree of Genetics. The Genetics subject is especially appraised as Professor job-

setting subjects and the “Tenth Five-Year”, “Eleventh Five-Year” key disciplines of Colleges

and Universities in Jiangsu Province by Cheung Kong Scholars of Ministry of Education.

Now the Key Laboratory of Developmental Genes and Human Diseases under Ministry of

Education has abundant resource of faculty, including a professor specially invited by

Cheung Kong Scholars Program of Ministry of Education, a 973 Chief Scientist, four laureates

of China National Funds for Distinguished Young Scientists , 2 awardees of the New Century

National Hundred, Thousand and Ten Thousand Talent Project, two professors who receive

subsidies from the state council, two of the first batch of young scientific and technological

leading talents of Jiangsu Province 333 High-level Personnel Training Project, four excellent

youth teachers of Blue Project. In recent years, it obtained construction funds up to more

than 20 million RMB from 985 Program and 211 Program. It has four stable research fields,

which includes the study of development related gene function and the molecular

mechanism and therapy of nerve development related diseases. It gained three National

Natural Science Funds for Distinguished Young Scholar, more than 20 National Natural

Science Foundation of China, a National 973 Foundation including 3 programs, a fund from

NIH, a Science Scholarship for The Excellent Youth Scholars of Ministry of Education of China

and several provincial research funding. Institute of Life Sciences mainly focuses on high-

level scientific research and publishes a number of outstanding scientific papers in life

sciences and medical field.

Chien-Shiung Wu College (Honors), named after the world renowned physicist and also

alumna of Southeast University, Madam Chien-Shiung Wu, is the honors college of

Southeast University, which provides elite education for outstanding students. The honors

enrolment is offered either to those who are exceptional in NCEE (National College Entrance

Examination) or to those who perform excellently in the competitive selection interviews.

Among over 2000 engineering students enrolled by Southeast University every year, the

selected 120 honors students rank about top 5%. The future major of the students cover all

engineering majors in Southeast University (Mechanical, Power, Information, EE, CS, Bio-

medical, Civil and Transportation, Automation, Materials, Chemical Engineering, etc.). Chien-

Shiung Wu College provides complete 4-year customize-tailored program including intensive

fundamental curriculum in first two years, which is tougher and more challenging. The

college provides more training on autonomous study, research-led study, integrated practice,

teamwork, communication, together with more emphasis on leadership, global view and

international experiences.

The joint education project between Institute of Life Sciences and Chien-Shiung Wu College

combines the advantages between both sides. Excellence of research and sophisticated HPC

from Institute of Life Sciences and open-minded teaching thought and advanced educational

program from Chien-Shiung Wu College will provide students with good opportunity to

participate in scientific research and supercomputer practical applications in ongoing

research projects. Through this joint education program, we hope to educate students to

obtain global view, interdisciplinary knowledge and skills, and solid ability of solving practical

problems. Under this framework, supercomputer-related courses and trainings carried out

by both sides is an important content of the joint education program.

Our HPC cluster provides us with the best practical environment for students. We mainly

train the students with basic principle of HPC and practical skills. We are teaching the

students with the courses of Linux, Shell, OpenACC, MPI, CUDA and so on, by which the

students can fast grasp the working principle of parallel computing. Subsequent practice on

HPC enables the students to increase their capability to resolve practical problems in

research. We encourage the students to do parallel computing in their projects. Especially,

at present, the majority of bioinformatic software and programs are designed in a way of

sequential program, which usually requires more running time. Parallelizing these sequential

programs will enhance analytic efficiency, which is an important orientation we spend

efforts on. The students modify the previous program code and achieve parallelization for

many sequential program. For the excellent students who have strong interests in

supercomputing, we establish an interest group and provide them with more training

programs. In order to broaden the student horizon, we invite the experts from Tianhe-2 to

introduce the latest advance of supercomputing technologies. Even we just start

supercomputing training, we believe supercomputing is becoming the most powerful tool to

accelerate scientific research and has a broad industrial application. Learning

supercomputing will enable the students to have more competitive capability for their

future either in research or in industry.

1.3. Supercomputing-related research and applications

Our HPC cluster is the main equipment of our Bioinformatics & Systems Biology Platform,

which is a core facility that provides bioinformatic support to the Institute of Life Sciences,

Southeast University. Our research covers a wide range of biological research fields requiring

cutting edge computational techniques such as genomics, proteomics, structure biology and

theoretical biology. Our purpose is to assist researchers in the processing, organisation and

analysis of biological data, providing insight and aiding scientific discovery for academic

partners and industrial collaborators by using HPC.

Data on biological systems is being generated at an unprecedented speed by new high-

throughput molecular profiling techniques. Consequently, we are rapidly accumulating

information about all aspects of cell function, such as DNA and protein sequences, gene

expression levels and its regulations, epigenetic modifications, post-translational

modifications, protein-protein interactions, metabolic pathways, protein complexes etc. No

doubt, in Big Data Era, bioinformatics and systems biology are rapidly extending their

applications in comprehensive biomedical research fields. Today medicine is now

undergoing a transformation of the nature of healthcare from reactive to preventive. The

changes is rooted in new sciences including computer science. This change will be catalyzed

by supercomputing that will trigger the emergence of precision medicine – a medicine that

focuses on the integrated diagnosis, treatment and prevention of disease in individual

patients.

There are many opportunities for basic and applied research when supercomputing is

applied in Southeast University. This exciting field of study promises to shed new light on

basic biological phenomena and may lead to the prediction of novel targets for clinical

treatment or the development of more efficient methods for understanding the mechanisms

of autism spectrum disorders and develop novel cancer therapeutic approaches. A central

focus of our research and application is to use supercomputing and bioinformatic tools to

interpret the information produced by such technologies and identify biologically and

medical significance in research and medical practice. These fields, we are working on

parallelizing the previous sequential program and empowering our analytic capability to face

up to the challenge from the era of Big Data and Precision Medicine.

1.4. A detailed description of the key achievements on supercomputing

research (no more than 2 items), attached with proof materials

(published papers, award certificates, etc.)

In 2016, we purchased our HPC cluster and established supercomputing education and

research. We have focused on a number of widely-applied bioinformatic tools such as BWA,

and spent our efforts on parallelize these program. These work is undergoing by either solo

or collaborating with other researchers.

II. Introduction of the team (5 points)

2.1. Brief description of the building process of your team

First of all, through the joint education program between Institute of Life Sciences and

Chien-Shiung Wu College in Southeast University, we establish a series of courses and

training for undergraduate students in Chien-Shiung Wu College. We also realize that

supercomputing is the future powerful tool for many fields. Based on this, when we got to

know ASC2017 competition, we can easily recruit a number of excellent students to build up

a team to participate in ASC2017. Head of Institute of Life Sciences – Professor Wei Xie （谢

维）and Head of Chien-Shiung Wu College – Professor Yinghui Kuang （况迎辉）, both give

great support for this activity. Captain of the team – Ning Lu, who plays an important role to

recruit these students. Ning Lu is also biology orientation student in the joint education

program between Institute of Life Sciences and Chien-Shiung Wu College. Many students

would like to join this activity, since more and more people realize the importance of

learning supercomputing. Soon we have got more than ten students, in which five excellent

students are selected to represent Southeast University to participate in ASC Student

Supercomputer Challenge 2017. Our team is also only team of Southeast University in the

Contest of ASC2017.

2.2. Brief introduction of each team member (including group photos

of the team)

Team advisor: Jian Li （李健）

Associate Professor in Institute of Life Sciences, Southeast University, male, 39 years

I am in charge of bioinformatics platform and HPC. Prior to joining Southeast University in

2014, I was post-doctoral fellow and, later, principle investigator in Department of

Biomedicine, Aarhus University (Denmark) from 2008 to 2014. I received bachelor degree of

medicine from School of Clinical Medicine, Southeast University in 2001 and PhD at Human

Genetics Institute, University of Aarhus in 2008. My research fields include Bioinformatics &

Systems of Biology and Genomics.

For the Human Genome Project (HGP), scientists from six countries spent 3 billion US dollars

and more than ten years to complete sequencing one human genome. Nowadays, one can

sequence a human genome within 24 hours with a cost of less than 1000 US dollars. It

means, we are accumulating more and more genomic data at an unprecedented speed.

Consequently, we have to evolve new capability to handle such huge data. Supercomputer is

a good tool to achieve such goal. In this context, we decided to purchase a high performance

computational cluster to assist our research. No doubt, in Big Data Era, bioinformatics and

genomics assisted by supercomputing are rapidly extending their applications in almost

every biomedical research field. I am developing and applying bioinformatics tools with HPC

to advance our understanding of the mechanisms of cancer and autism. To obtain novel clue

from study such complex diseases, usually we need to analyze a large scale of data from a

large cohort of patients generated by high throughput technologies. Supercomputer makes

analyze such huge data possible. Parallel computational programs further make such

analysis faster and more effective. Now, we are using our HPC to carry out the following

projects: development of novel algorithms to understand tumorigenesis of skin tumors;

meta-analysis of autism associated genes; deepening understand of the human genome;

gene networks in cancers; novel molecule drug development.

It is the first time for me, for everyone in my team, and also for Southeast University to

participate in ASC Student Supercomputer Challenge, so we would like to learn more

knowledge about supercomputing, to make more friends as well as we will try our best to

achieve a good performance for our debut in ASC.

ASC, we are coming!

Captain: Ning LU （卢凝）

Junior undergraduate student of the joint education program between Institute of Life

Sciences and Chien-Shiung Wu College, Southeast University, female, 20 years, majoring in

Biomedical Engineering

I have learned interdisciplinary courses, covering three main aspects of BME: electrical

devices, cell biology & neuroscience, and bioinformatics & genomics. I have taken lectures

on C++ programming, MFC, Mathematical analysis, Probability Theory and statistics. And I

got A in core curriculums -- Analog Electrical Circuitry, Digital Signal Processing and

bioinformatics, and A in all lab courses so far (analog circuit lab, digital circuit lab, physics

experiments in 3 semesters, chemistry experiments in 3 semesters, immunobiology

experiment, genetics experiment and biochemistry experiment).

I won the first prize in 2016 Undergraduate Electronic Design Contest of Southeast

University, and participated in 2016 Undergraduate Electronic Design Contest of Jiangsu

Province. During the training of Electronic Design Contest, I deepened my understanding of

signal amplifier and how MCU (Microprogrammed Control Unit) help to analyze signals.

Although as far I have few experiences about supercomputing, it is really appealing to her

due to its outstanding capacity and efficiency to cope with mass data. “Sunway TaihuLight”

is one of the biggest breakthrough in technology in our country in last year, so I really hope

to run my work on Sunway one day after the primary contact with Sunway in this contest.

Member: Lingying HUANG （黄灵莹）

Seminar undergraduate student of Chien-Shiung Wu College in Southeast University, female,

22 years, majoring in Electric Engineering and Automatic Control

University education is like a paradise of knowledge replete with precious academic

treasures. I study in Chien-Shiung Wu College in Southeast University which chooses the top

students from each major. I greedily absorbed all kinds of “nutritious” knowledge. In the

early two years in the university, I study many multi-disciplinary courses with other major’s

top students. So I study from a broad field, not trapped only in one specific major. I can

always learn from my classmates and have good time together. Encouraged by the

competitive atmosphere among my classmates, I have the highest GPA in my college.

With the development of the Internet, Supercomputing is becoming more and more

important in everyone’s life and can be applied in many fields. This is also a field that attract

my interest, so after class, I committed to improve the research capacity. I widen my horizon

by taking part in various kinds of competitions, such as smart car competition which needs

us to improve the arithmetic of the car to run automatically and much faster. I also took part

in many math competition since math is the common language in science. Supercomputing

cannot live without mathematics. I won the Honorable Mention in MCM American

mathematical contest in modeling. In addition, I have led two research projects during my

college study, one is mainly studying the optimum control method of central air conditioning

and the other is about fast load response. In my first research, our group published two

papers. I represented our group to take part in ISIPS meeting in Waseda, made an oral

presentation and participated in a poster session. Last summer holiday, I went to Georgia of

tech in Atlanta for a summer exchange program, which broadened my horizon. This summer

holiday, I had a two-month internship in Electric Power Design Institute. The automatic

process left me great impression.

Apart from academic excellence, I paid much attention to improving my comprehensive

qualities because I believe that the real success of a person does not simply depend on his or

her professional expertise but also on many other related factors. I worked as subway

volunteers. I cared about the circumstance of the quality of water in Nanjing and pursued

the legal loopholes. These experiences enriched my imaginative thinking while cultivating in

me a unique humanistic sensitivity. What’s more, I participated in some of my favorite clubs

and I was responsible for School Debate Association for two years. Now I’m in charge of

organizing the events in the first student party in Chien-Shiung Wu College and the monitor

of Higher Polytechnic experimental class. My experiences in this regard have enhanced my

organizational and cooperative abilities as well as have made me increasingly understand

the importance of effective communication and collaboration with other in the modern

world. I believe that the same holds true for scientific research. Most scientific discoveries

are made not on the basis of the individual efforts of a particular scientist, but on the

accumulative and concerted coordination and cooperation of a group of scientists.

Supercomputing is an inevitable tendency that will turn the world into a better place, more

convenient and smart. That is why I want to have deeper and further study in this field

though ASC2017. My academic excellence, academic research experiences & capability and

comprehensive qualities are suitable for this program and I believe I can achieve more self-

improvement since we will face with other competitive rivals.

Member: Yun YANG （杨赟）

Junior undergraduate student of Chien-Shiung Wu College, Southeast University, male, 21

years, majoring in Electrical Engineering

I am majored in Electrical Engineering and have taken related courses such as Linear Algebra,

C++ Programing, Data Structure, Solid State Electronic Devices, Electronic Systems & Design

and Microcomputer Theory and Interface Technique. In addition, I also participated in

Mathematical Modeling Contest of Southeast University, Electronic Design Contest of

Southeast University and Programmable Logic Device Contest of Southeast University.

In three projects, I have practiced my programing skills – brute force decrypt, handwritten

numeral recognition using K-NN and network crawler based on Hetrix. With the help of

teachers and teamwork, I have learned much knowledge of Computer Science. Although I

have few knowledge of supercomputing, the above experiences and a few knowledge of

FPGA can be helpful.

As for parallel algorithm and distributed system, I have a few knowledge from self-learning

and communications with my teachers. I think, it is a good chance to learn supercomputing

and learn more about computer architecture through ASC and to learn from other students

and engineers in this area. I hope our team have a wonderful time during this contest.

Member: Mengchu FANG （方梦初）

Junior undergraduate student of Chien-Shiung Wu College, Southeast University, female, 21

years, majoring in Information Science and Engineering

I have taken lectures on C++ programming, MFC, data structure, micro-computer systems,

COA (Computer Organization & Architecture: Designing for Performance) and etc. In

addition of these lectures on major, numerical analysis, mathematical analysis, graph theory,

probability theory and mathematical statistics and other lectures on math has provided a

foundation for mathematics. I have also participated in two SRTP (Student Research

Training Program) programs: (1) Virtual instrument platform based on PC - Research on

parameter extraction and automatic measurement of terahertz semiconductor devices; (2)

Study on the relationship between electrode tip parameters and excitation selectivity. Both

of the programs were accomplished successfully through the help of teachers and

teammates. In all kinds of competitions, the first prize was honored in The Twelfth

Undergraduate Physics Experiment and Research Papers of Southeast University, the third

prize was honored The Eighteenth Electronic Design Competition of Southeast University,

the provincial third prize was honored in 2015 National Mathematical Modeling Contest, and

was designated as Honorable Mention in 2016 Interdisciplinary Contest In Modeling.

Personally speaking, supercomputer attracts me a lot for its enormous potential to be

applied to the solving of practical problems that conventional computer can’t. Parallel

algorithm implemented in supercomputing breaks through the limitation of serial algorithm,

improving the calculating speed greatly. I do hope that supercomputing can be used widely

in the future to provide data that people needs faster and more accurately.

Member: Tian SU （苏恬）

Junior undergraduate student of Chien-Shiung Wu College, Southeast University, female, 20

years, majoring in Computer Science and Engineering

I have taken lectures such as C++ programming, MFC, data structure, micro-computer

systems and etc. I am studying all kinds of algorithms and preparing for the ACM

International Collegiate Programming Contest at this stage. I have also participated in one

SRTP (Student Research Training Program) program about developing an application for

indoor locating system. I won the 2016 National Scholarship and have interest in machine

learning and big data as well as high performance computing. Personally speaking, I think

high performance computing has great potential for many fields. In the era of data explosion,

it is necessary to use effective tools and methods to make full use of all the information.

With the development of artificial intelligence and computer graphics, super high

performance computing will be an indispensable condition for research in the field of

computer science. I would like to be able to gain a deeper understanding of super high

performance computing and its applications, and to contribute to its development in the

future.

Group Photos

Our group photo was taken during ASC2017 training in Zhengzhou University

The team of Southeast University for ASC2017

2.3. Your team slogan

Use Supercomputing! Win the Future!

III. Technical proposal requirements (90 points)

1. HPC system design (15 points)

Objective: Design a system to achieve the best computing performance under 3,000-watt

power consumption.

Specify your system’s software and hardware configuration and interconnection. Describe

the power consumption, evaluate the performance, and analyse the advantages and

disadvantages of your proposed architecture.

Our proposed system is based on the Inspur NF5280M4 server following instructions and

recommendations. The components and power consumption estimation listed in the table

below.

Item Name Configuration Energy Quantity

Server Inspur
NF5280M4

CPU:Intel Xeon E5-2680v4 x 2, 2.4GHz,
14 cores (120W x2)

522.5W 5

Memory: 16Gx8, DDR4/2400MHz
(7.5W)

Disk: PCIe 1TB SSD x 1 (10W)

Accelerator: NVIDIA Tesla Pascal P100
GPU (250W)

Mellanox ConnectX-3 InfiniBand HCA
EDR card, single port (15W)

Switch GbE Switch Huawei Technologies S1700-24GR
Ethernet switch, 24 ports

20W 1

EDR-IB Switch SB7700 Series Switch-IB EDR
InfiniBand switch, 36 ports

136W 1

Cable Gigabit CAT6
cables

CAT6 copper cable, blue, 3m 0 10

InfiniBand
cable

InfiniBand EDR optical fiber cable 0 5

Within the power limitation of 3000 Watts, three configurations can be used, 1) 10 nodes all

CPU, the peak performance is 10.75TFLOPS, 2) 5 nodes each with one Pascal P100 GPU, the

peak performance is 28.8TFLOPS, or 3) 3 nodes each with two Pascal P100 GPUs, the peak

performance is 31.4TFLOPS.

System Peak Perf/TFLOPS Power/Watts Efficiency/(GFLOPS/W)

10x dual socket 10.75 2881 3.7

5x dual socket + 1x GPU 28.8 2768.5 10.3

3x dual socket + 2x GPU 31.4 2473.5 12.7

The table shows clearly the three systems we have considered, listing system configuration,

peak performance and power, especially efficiency.

Considering the application demand, we decided to use the second configuration featuring

dual socket x86 processors with one NVIDIA Pascal P100 GPU. The advantage is that

1) very high energy efficiency (>10GFLOPS/W);

2) capable of classical applications without GPU acceleration because of 28 cores per node,

total 140 cores;

3) capable of popular GPU accelerated applications in many science areas, 5x GPU can get

peak performance around 23.5TFLOPS;

4) high speed 100Gbps interconnect provides scalability for the applications.

The disadvantage is that for CPU only applications the designed cluster does not work as fast

as a pure CPU cluster.

The system layout is as below, black line indicates Gigabit Ethernet running at 1Gbps (for

each node one port is used, the other is either as alternative or can be binding for quick

speed), green line indicated EDR-InfiniBand at 100Gbps for parallel applications’ best

performance. The end users and system administrators can connect to the nodes with

Ethernet connection.

Software list

Operating system: RedHat enterprise Linux 7.2 with build-in GNU compiler

Development Tools: Intel Parallel Studio 2017.1 (compiler, math library, mpi library) for

running software on x86 CPU, NVIDIA CUDA Toolkit 8 for GPU computing

Cluster monitoring and scheduling system: PBS/Torque, or SLURM

2. HPL test (15 points)

Summary

We have achieved 1.317TFlops through a single node HPL test on KNL cluster by Zhengzhou

University. The HPL main parameters are N=40960, NB=144, P x Q=4 x 16. During the HPL

run, the software reports 1.641Tflops, but the average value reported by HPL is still

1.317Tflops.

Software Environment

Table 1. Software Environment and Version Information

Testing Method

HPL is the standard to test computer’s performance in floating point. The HPL package has

lots of parameters to be adjusted. For the Knights Landing hardware, how to map the matrix

solution problem to certain hardware (KNL here) remains a challenge.

Xeon Phi 7210 is used in the experiments. It has 64 cores as 32 tiles running at 1.3GHz.

operating system GNU/Linux CentOs7.2

compiler Intel Composer XE Suits 2017.1.043

math library Intel MKL 2017.1.043

MPI software Intel MPI 2017 Updata 1

HPL version hpl-2.2

PBS Torque

Based on the architecture of KNL which contains 32 tiles, we have decided to run the HPL

test by the following steps:

a) Single tile test

Here we decided the threading of HPL with MKL, and the size of NB.

We tried to run HPL test using per tile to find how many threads and how large

matrix should be allocated to one tile.

Table 2. Threads Allocation per Tile

ppn=1,P*Q=1*1,N=16384(2G),NB=320
THREADS DP/GFlops Average DP/GFlops

1 33 33
2 61 31
4 109 27

The conclusion is that one thread for each core works best, putting 1 or 4 threads

on one tile did not perform well.

We then decided to observe the relation of FLOPS and NB. The NB decides a block

of matrix with certain size can fit into L2 cache of a tile (shared by two cores). Our

experiments show that for one single process, NB value to fit the L2 cache (1MB)

gives best performance. However, this is shared by two cores, so we decided to

observed NB values which can fill up 1/2(NB=256), 1/4(NB=180), 1/8(NB=128) and

1/16(NB=90) of the 1MB L2 cache.

b) Run HPL test using 32 tiles to find suitable matrix scale and block size to fill into each

tile.

Here we decided to use MCDRAM for its very high speed (400GB/s) instead of

DDR4 main memory. We also found that the percentage of capacity of MCDRAM

(16GB) impacts the performance a lot, careful experiments are designed to find the

best N (matrix size). As discussed above, we also check some values of NB.

We use mpirun –np 64 numactl –m 1 ./xhpl so that we can put the matrix into

MCDRAM. We tries the size from 42240 (maximum) down to 21120, and some

values between. We found that 40960 gives best performance with NB=144.

The NB value we typical use 80, 160, 176 and 352, the 336 recommended from

Intel documents does not work well. From experiments we found that 144 is good

enough for most test cases.

Fig 1. N = 28160 relationship between NB and DP

Also for P x Q, the documents said that P should be much smaller than Q, this is not

true. We found that in most cases, 8 x 8 and 4 x 16 gives very close performance

numbers.

Fig 2. Initial Test for Process Grids P by Q

We started HPL test from N = 40000 because it may suitably fit into the MCDRAM

(𝟏𝟔𝐆 × 𝟕𝟓% ≈ 𝟒𝟎𝟎𝟎𝟎 × 𝟒𝟎𝟎𝟎𝟎 × 𝟖𝐁).

N and NB are two vital parameters for HPL test. Through this test we guessed that

4 by 16 is better for 64 processes, which led us to think how to allocate processes

in 32 tiles.

900

950

1000

1050

1100

1150

80 160 176 320 352

D
P

NB

N=28160

8*8 4*16

c) Change different types of thread affinity and different sizes of process grids to hide

latencies.

Affinity means that during the run, a process is binded to a certain core, so that the

hardware core works best. According to document, we used “-perhost 64 -env

I_MPI_PIN_PROCESSOR_LIST allcores” as mpirun command line to do the affinity.

The performance improves a bit, around 5%.

d) We also tried to adjust other parameters, but it seems little impact

Performance Optimization Methods

a) Build and compile level

The HPL package is downloaded from netlib official website, and linked with Intel MKL as

indicated in most documents, for MKL’s performance. Our tests prove that one thread (or

process) per core works best for MKL, so a sequential version of MKL is used.

i. Compile options

We compared –Ofast and –O2 optimizations by compiler, and found that no difference is

found.

ii. Environment variables

PHI_KMP_AFFINITY controls threads bounding, which can be set as COMPACT, SCATTER, and

BALANCED.

Because of the architecture of a tile, which contains 2 cores providing for 4 threads at most,

we have tried MKL_NUM_TREADS and OMP_NUM_TREADS for 1, 2, 4.

iii. HPL.dat revision

A HPL.dat test file can be find in Appendix A.

iv. Memory and cluster modes

Flat and Quadrant mode imply that we are supposed to use numactl or memkind library to

manage allocations.

Fig 3. Default Option and “numactl -m 1” Create quite Different Results

We can find that this command impacts the performance a lot.

b) Source code level

Because the MKL is well-coded, almost every tempt to optimize the source code turned out

to be failed. We have tried to reduce “wall time update” shown in the output file but it also

failed.

Performance Estimation

KNL DP estimation:

1.3 GHz × 64 cores × 32
flops

clock
= 2662.4 GFlops

Problem and Solution Analysis

Through the whole HPL test, we found that N, NB and affinity are the key to achieve

high performance. Because of the new architecture of KNL, which has changed our

mind a lot, we were confused for a long time on N and NB adjusting. Thanks for Intel’s

technology help, we may refer to the following two ideas:

a) Problem sizes calculation

If we plan to make the most of MCDRAMs, N can be calculated by:

16GB × ratio = N × N × 8B

Where ratio from 50% to 80% is good choices.

b) Block sizes calculation

If we have N, P*Q, according to the advice that N is recommended as divisible by

NB* LCM (P, Q), where LCM is the least common multiple of the two numbers.

Also, NB=336 is recommended for Xeon Phi 72 cores and N >> NB may help.

However, as we said before, the Intel document isn’t always right. To find out suitable N

and NB, we searched much information on MCDRAM and two modes mentioned before.

Finally, through a mountain of experiments on adjusting MCDRAM usage ratio, we

found our answer.

Appendix A. HPL.dat

HPLinpack benchmark input file

Innovative Computing Laboratory, University of Tennessee

HPL.out output file name (if any)

6 device out (6=stdout,7=stderr,file)

1 # of problems sizes (N)

40960 Ns

3 # of NBs

80 144 160 176 320 352 NBs

0 PMAP process mapping (0=Row-,1=Column-major)

2 # of process grids (P x Q)

8 4 2 Ps

8 16 32 Qs

16.0 threshold

1 # of panel fact

2 1 0 PFACTs (0=left, 1=Crout, 2=Right)

1 # of recursive stopping criterium

2 NBMINs (>= 1)

1 # of panels in recursion

2 NDIVs

1 # of recursive panel fact.

1 0 2 RFACTs (0=left, 1=Crout, 2=Right)

1 # of broadcast

0 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)

1 # of lookahead depth

0 DEPTHs (>=0)

0 SWAP (0=bin-exch,1=long,2=mix)

1 swapping threshold

1 L1 in (0=transposed,1=no-transposed) form

1 U in (0=transposed,1=no-transposed) form

0 Equilibration (0=no,1=yes)

8 memory alignment in double (> 0)

3. Test and optimization of the MASNUM_WAVE program on

Sunway TaihuLight (30 points)

Summary

The application is the surface wave model named MASNUM Wave Numerical Model

(MASNUM_WAVE). We successfully compiled and ran the examples provided and passed the

cross validation. On basis of that, we conducted performance optimization of the

MASNUM_WAVE program by several ways (including compiling option optimization,

eliminating goto structure, loop Interchanging, math function optimization, OpenACC loop

combination, Athread, etc.) on Sunway TaihuLight. And we did achieve good performance

and efficiency, speeding the process about 7.4 times up than original codes.

I. Testing Software Environment

The TaiHu Light platform consis of two part, the login node and the computing node:

Table 3.1 Login node

Table 3.2 Computing node

II. Testing method

Loging node ascusr246

Operating System Red Hat Enterprise Linux Server release 6.6 (Santiago)

Linux kernel 2.6.32-504.el6.x86_64

Compilers

MPI: mpif90(SWCC Compilers: Version 5.421-sw-485 by xiaoq at

devcomp.yichu.jn on 2016-09-27 16:21:45 +0800)

OpenACC: swafort(swacc version 2.0.0(svn 1457,acc_test at

cloudserver10,Feb 19 2017 23:31:50))

MPI MVAPICH2 in /usr/sw-mpp/mpi2

MASNUM_WAVE MASNUM-WAM 2.2

Computing node vn008417

Linux Kernel 3.8.0-sw5-00863-ge93592c

1. Software Download

We downloaded MASNUM_WAVE and Netcdf package form Sunway Platform: /usr/sw-

mpp/apps/src/masnum_wave. And later we constructed our own files under the directory

/home/export/online1/ascusr246, in which we did our testing and optimization.

2. Compiling & Running

2.1 Compiling

In directory /home/export/online1/ascusr246/masnum_wave/source/bin, after modify the

necessary parameters in the “makefile” file and using “make” command to compile and

linking the code, ”masnum.wam.mpi” is generated, which indicates the compiling successed.

2.2 Running examples

1) Example1 is the experiment to simulate the western Pacific (99-150E, 0-50N) ocean surface

wave from January 1 and February 28, 2009. The resolution is 1/6 degree and the length of time

step is 7.5 minutes.

In directory /home/export/online1/ascusr246/masnum_wave/exp/exp1, the job submission

script “exp1_run.csh” has commands to remove the old version of ”masnum.wam.mpi” built

before and rebuild it again, so it’s not necessary to “make” the makefile before run exp1.

The screenshot of codes in .csh file and compiling process are below:

2) Example2 is the experiment to simulate the global (0-360E, 72S-72N) ocean surface wave

from January 1 and June 30, 2009. The resolution is 1 degree and the length of time step is

15 minutes.

Different with exp1, in “exp2_run.csh” file, the parameter “needmake” is set to “NO”,

“masnum.wam.mpi” will not rebuilt again, so we change it to “YES” before run exp2.

2.3 Job Submittion

In testing, we tried one job submission commands and two job queues to submit our

examples. Here are the details of them.

1) Two job queue:

a. q_sw_expr : the default queue.

Aimed for development, debug, porting and optimization of user program. It has free access

to all users but with some limits, which are:

1. parallel size should be smaller than (or equal to) 16;

2. the computing clock can only last for one hour.

Therefore, we used it to try our mini samples and test optimization for specific command or

codes.

b. q_sw_asc_3 : user’s own queue.

Users can use it without time limit but with size limit of 64, so we use it to run the full of

example1 and example2, which need several hours to complete the process.

The command “qload -w” can be used to check the name of current queue.

2) submittion command:

The command “bsub” can be used to submit job to specific queue, and one example of

correct format is:

bsub -I -n 64 -np 4 -cgsp 64 -q q_sw_expr -share_size 6000 -host_stack 1024 -b -m 1 -o

out.qrunout ./masnum.wam.mpi

Parameter Specification:

-h Display help instruction.

-I
Submit interactive job, let the job submit to the job submission window. The
job will be batch if there is not such option.

-q Submit job to the specified queue. Must be selected.

-p Print the node list and bitmaps that the job allocates in the job output.

-n Specify the number of all the MPE core in need.

-np Specify the number of MPE cores that each node uses

-cgsp
Specify the number of CPE cores that each CG needs, the parameter must be
<=64.

-o Direct the stdout and stderr output of the job specified file, options.

-b Allocate the CPE core’s stack to the cache.

-
share_size

Specify the size of the shared space for the core group.

-
host_stack

Specify the size of the stack space for the MPE core, 8M by default.

2.4 Job Terminated

“bkill jobid” or “ctrl+C” is used to terminate the current process.

2.5 Job Status Queries

“bjobs” is used to query the status information of the job in the queue.

Parameter Specification:

-q Specify queue to query.

-I Display job details by long format.

-w
Display with fill length. When the length of the column value exceeds the column
width, do not intercept according to the column.

-d Displays the recently successfully completed jobs.

-e Displays the recently aborted jobs.

-p Display the job with pend status.

-r Display the job running at the moment.

jobid Job id.

3. Cross Validation

4. Hotspot testing

Include cpu_time function to test every file’s operating time and find the most time-

consuming part. The cpu_time function code can be seen in the following:

real ::start,finish

call cpu_time(start)

do loop

call cpu_time(finish)

print '("time=",f6.3)',finish-start

Table below shows the hotspot of this program. As the date has few influence on the time

test program, we chose the first day to run time test function by setting parameter “istime”

and “ietime” in “exp1_run.csh” to “20090228” and “20090301”.

Table 3.3 Time test of hotspot

function_name propagat implsch mixture_wit mean1 mean2 intact

operating_time (s) 2810 1083.83 168.32 163.83 162.97 29.72

From this table, we can find that the subroutine propagat and the implsch are the hotspot in

this program, thus in the next part, our schedule mainly focus on optimizing these two

function’s operation.

III. Performance optimization methods

1. Compiling options and job submission parameter optimization

We have tried lots of combination formats of compiling options and job submission

parameter, and did get some good results from these sample tests. Some of the successful

test are listed below in Table3.4.

Table 3.4 Compiling options and job submission parameter optimization

 n 64 O3 np4 cgsp64 Ofast

sum time(s) 5576.52 5318.2 21556.85 5548.13 5698.6

simple core(min) 92.942 88.63667 89.82021 92.46883 94.97667

(using data of 20090228 to run samples)

2. Eliminating goto structure

Goto in fortran is as same as the function in C. It enables to exit any loop at any time and

goto anywhere in the same file. However, it destroys the loop function and could not be

optimize by the -O optimation.

As we use the –O compelling optimation at first, it is better for us to sustitute the goto

structure.

 After analysis the if structure, we improve the code as follows:

We reran the project. After we modify the code, the correctness validation step is also

success.

3. Loop Interchanging

Unlike the C environment, Fortran has the Column priority instead of the row priority. Such

as in the propagat.inc, the largest loop is

However, like the first array, the ia is the Colume variable parameter in nsp but it is not the

inner loop parameter. Thus it is better to make a loop intercharge like the following:

After charging the layout of the data in the program, it will improve cache performance.

Placing data close to where it will be used can avoid moving the data, therefore, the rate of

the program will be improved.

4. Reducing the mathematic process: Sin\Cos function optimization

Sin and cos function in Fortran itself may consume a little time, but when it is in the

innermost part of the loop, the time waste is accountable. After analyzing the code, we

found the project only use jl(12) values to compute sin and cos function, thus it is better for

us to use two array to precalculate the sin and cos function at first and save them in the

array to avoid recalculation.

So we allocate two other local variables, sin_th, cos_th to save the mathematic result. Thus

instead of doing the mathematic operation every loop, we should only do jl(12) times sin

and cos function. This save a little time as we ran the file.

5. Use OpenACC: Loop Combination

Sunway many-core processor uses the on-chip heterogeneous architecture and was

composed of 4 heterogeneous groups (core group). Each core group contains 1 MPE core

and 64 CPE cores.

We try to add OpenACC to transport the data to the CPE cores and make them parallel.

We first try to add the OpenACC before the j loop at first. However, as we grep the jl’s

meaning: jl=12 and kl=25. However, they are all too small to parallel program, therefore, we

try the loop combination.

After the loop combination, it is easy for us to add OpenACC and make the CPE cores work

effectively. Thus we first try to add the OpenACC before the loop j. To modify the file, we

also chage the parameter “F77” in the makefile to “swafort” instead of “mpif90”. Otherwise,

it will not compiler the OpenACC part correctly.

6. Use Athread

Before design our MPE-CPE parallel structure, we need to know the structure and

understand the relationship between files correctly. The structure tree of wave_cor module

is below:

There are 7 core modules in wave_cor:

(1) time_mod --- Used to deal with the time.

(2) netcdf_mod --- Used to inout/output data through netcdf format.

(3) wamvar_mod --- Include all the global variables used in this model.

(4) wamfio_mod --- Subroutines for I/O data or model results.

(5) wamcpl_mod --- Subroutines for coupling w/current model.

(6) wamcor_mod --- The core subroutines of this model.

(7) wamnst_mod --- The subroutines for model nesting.

We encountered with some problems while using Athread to optimize, so we will discuss

about this part later in this proposal (in part V: Problem and solution Analysis).

IV. Performance estimation

What surprise us is that, after the OpenACC modification, the running time of the project

become longer than the early one. And when change the F77 to mpif90, although it

consumes more time than the former one without the loop Combination, it is shorter than

using swafort.

We guess as it is included in a very large loop and copyin and copyout may need a lot of time,

that’s why using OpenACC may not compare with the former one. Hence, we try to make the

four times loop into one time and add the OpenACC before the beginning of the loop.

To combine the four times loop, we use a test script to test whether our subtitution is the

same as the former one.

The test script as follows:

This is the part of the test result:

As we can see from the test result, this subsitution can implement the function as the

former one.

Here we combinate the loops into one loop and the loop paremeter is determeined as

follows:

Then we can add the OpenAcc outside the loop as follows:

However, the running result is also not as good as the former one. We use the IdmAnalysis

to try to analyse the memory usage but get no message out.

V. Problem and solution Analysis

5.1 Problem analysis

There are may be two reasons for the failure of OpenACC:

1) The code is too complex to load on the CPE cores to calculate them

2) The local storage SPM only has 64KB，and there are a four dimension array “ee”

which need to read and copy may consume a lot of time which in the CPE core.

Hence, to reduce the load time, it would be better to load all one dimension array to the CPE

cores. This could not be done by the OpenACC, thus we try to use Athread to accelerate the

project. Although the copyin and copyout clause could be defined by ourself, it may be more

flexible to use Athread to mange data transfer than using OpenACC.

As the space of the CPE core is limited to 64KB, we could not copy the entire array at the

same time. Array dimensionality reduction is very important in this part to reduce the

memory usage.

The multiple dimension array cannot be copy at the same time due to the space limit,

therefore, we use do loop to make Array dimensionality reduction.

It works specially as follows:

For one dimension array, it is no need to add it in a do loop, as every CPE core should include

this array. It is defined as the following:

For two dimension arrey, it should be included in the first loop as follows:

For three dimension array, we include it in the ic ia loop as follows:

As each index of the four dimession array “ee” is change in the inner loop, it could not do

dimension reduction, thus we choose to read one single data at one time like the following

part:

After that, we change all the variable to the local variable name such as that ee will be

replace by ee_slave:

We define the local variable in the first part as follows:

2. Solution

Compile separately on MPE and CPE cores:

First, change .inc to .f90 use: mv propagat.inc propagat.f90

Second use sw5f90 -slave -c propagat.f90 to compile

However, the file cannot detect the common/share_g1’s clause as follows:

We try to add the clarify at first to assign the space dynamically, but another problem

indicate us could not use variable as space upgrade and downgrade.

As there is no complex example in the guide, although we are clear of the inner link of each

documents, we could not add Athread to modify the code correctly. To make further study,

we wish there could be a complex example for us to study how to use Athread.

Appendix

1.compiling options.xlsx (605KB)

The original data of compiling options optimization.

4. Deep learning contest: traffic prediction (30 points)

Summary

Based on the existing hardware, we built software platform to use deep learning framework

PaddlePaddle provided by the committee to complete the task of traffic prediction and

model optimization.

Firstly, we select the valid data from the original data set, eliminating non-workday data for

the predicted day is a workday and data of workday and non-workday differ a lot, and

choose the method of cross validation to evaluate the error. The sum of absolute value and

the sum of the square of absolute value are calculated. The later one is used to determine

the rank of models for it can reflect RMSE properly when n is the same. Then, the original

model is optimized according to the result of cross validation by adjusting the model

structure and fixing the parameters. We obtained the result that the model with learning

rate 2e-3, DecayedAdaGradOPtimizer, 4 hidden layer, emb_size 16, SoftmaxActivation and

SigmoidActivation can reach the highest accuracy finally.

1. Hardware and Software Platform

Table 1.1 Hardware and Software Platform

Core Intel i7

Memory 16G

Mobile Hard Disk Drive 1T

Ubuntu 14.04

Docker for Ubuntu 14.04

Paddle 0.9.0-cpu-ubuntu-14.04

2. Introduction of PaddlePaddle

PaddlePaddle (PAarallel Distributed Deep LEarning) is an easy-to-use, efficient, flexible and

scalable deep learning platform, which is originally developed by Baidu scientists and

engineers for the purpose of applying deep learning to many products at Baidu. It has

following features:

Flexibility: PaddlePaddle supports a wide range of neural network architectures and

optimization algorithms. It is easy to configure complex models such as neural machine

translation model with attention mechanism or complex memory connection.

Efficiency: In order to unleash the power of heterogeneous computing resource,

optimization occurs at different levels of PaddlePaddle, including computing, memory,

architecture and communication.

Scalability: With PaddlePaddle, it is easy to use many CPUs/GPUs and machines to speed up

your training. PaddlePaddle can achieve high throughput and performance via

optimized communication.

3. Data Selection

Speeds’ measurements at every link from 00:00 a.m. on March 1st to 08:00 on April 20th in

every 5 minuet are provided as original data for training. In fact, however, congestion states

differ a lot in workdays and non-workdays.

Fig.3.1 Congestion States in workdays and non-workdays, taking 20160301 (workday)

and 20160404 (non-workday) in link 20905 as an example

Therefore, to obtain a more accurate predicting result, data in non-workdays have to be

eliminated out for 20160420 is a workday. Non-workdays during 20160301 and 20160420

are 20160305, 20160306, 20160312, 20160313, 20160319, 20160320, 20160326, 20160327,

20160402, 20160403, 20160404, 20160409, 20160410, 20160416 and 20160417.

4. Evaluation Method – Cross Validation

Cross validation is applied to evaluate the predicting result in terms of accuracy. For the

prediction is time sequence based, data between 201604190805 and 201604191000 are

chosen to do cross validation. The chosen data are eliminated and predicted using

PaddlePaddle. To evaluate the predicting error, the sum of absolute value and the sum of

the square of absolute value are calculated. The more accurate the model is, the smaller

sum values it will have. For RMSE is applied for evaluation officially, models’ rank of the sum

of absolute values’ square is more important than that of the sum of absolute value when n

is the same. That is, the s sum of absolute values’ square is used to determine which model

is best optimized. A program based on C is coded to calculate the sum values, which codes

are shown in appendix.

5. Optimizing Process

With respect to deep learning process, many parameters play an important part in the traffic

prediction such as model choice, learning rate, pass number, size of embedding layer and so

on. To achieve the greatest result, a series of trial and error are performed and listed as

below. To evaluate the error rate, we delete the data after 19th April 8:00 and compare the

prediction results with the original data.

5.1 Original Model

The original model is a regular neuron network of three layers, including the input layer, the

embedding layer and the output layer. The input layer is generated by the traffic data matrix

provided, encoding the original data to the form that can be processed by paddle. The

embedding layer is composed by the full connected layer and has the size of 16. Deep

learning method is used to calculate the parameters of this layer automatically. The output

layer figures out a score for each testing instances in the loop of 24 times through activation

functions and output the final prediction result in the format of csv. The origin batch size is

set 128 which means 128 inputs are chosen to be processed each time. The pass number

stands for the number of times that the model are learned and adjusted.

5.2 LSTM

When it comes to this specific application scenario, the Recurrent Neural Networks is

suitable for solving this problem because it is a network that contains loops that allow for

persistence of information. Chain features reveal that RNN is intrinsically related to

sequence and list. Among them, Long Short-Term Memory is the most natural neural

network architecture for this kind of data. When applied in the paddle, however, the

interface and the encapsulations of different kinds of functions are so complex that

parameters are all linked closely. Due to all the exceptions and errors, LSTM fails to work

ideally. Consequently, many other ways are tried otherwise.

5.3 Learning Rate

Learning rate is quite important in the training process because it controls the speed of

weight update. If rate is set too large, the prediction results may go across the optimal value,

otherwise it will make the convergence speed too slow. Additionally, a lot of optimizers

based on self-adaption can be used to help revise the learning rate. For the initial rate value,

several values are tested in our platform. Finally, 2e-3 has the best performance compared

with other values such as 1e-2, 1e-4 and so on.

5.4 Size of Embedding Layer

Since the model of neural network is a black box, the influence of the size of embedding

layer is out of control in some degrees. Basically, we tried both a bigger number like 20 and a

smaller number for testing. However, the most suitable value in our case is 16 at last.

5.5 Output-pass

Since every turn the parameters will be adjusted according to the feedback, theoretically the

bigger the pass number is, the more accurate the results are with the appropriate learning

rate. The initial pass in the model is 10. Unfortunately, only changing the number of pass in

the train.sh will cause an error.

5.6 Optimizers

Paddle provides many mature and handy optimizers in its framework. To pick out the

optimal one regarding to this problem, all the methods are tested on the basis of the same

learning rate of 1e-3 and the same batch size of 128. After many turns of running code,

grading and sorting, decayedadagrad optimizer is proven to be the best one.

5.7 Hidden Layer Number

Three layers of neuron network are quite simple. Adding the hidden layer number will build

a more complex model and may produce better results. Therefore, two more layers are

added in our model and successfully improve the performance.

Fig.5.7.1 Codes for increasing hidden layer number

5.8 Activation Functions

The function of the activation function is to add some nonlinear factors to the neural

network, so that the neural network can better solve the complex problems. Different kinds

of activation functions may apply to different scenarios in the real world. For the output

layer, we maintain the original softmax activation function. For the last but one layer,

sigmoid activation function is tested and optimizes the whole model further.

Table 5.1 Parameters and Results of the Models

 Model
learni
ng_ra

te

Optimize
r

Hidden
layer

number

Activati
on

emb_
size

Sum of
absolute

value

Sum of
absolute

values’ square

1 adam 2e-3 Adam 1 Softmax 16 3075 4901

2
adadelt

a
1e-3 AdaDelta 1 Softmax 16 3078 4888

3
moment

um
1e-3

Moment
um

1 Softmax 16 3032 4776

4 adagrad 1e-3 AdaGrad 1 Softmax 16 3034 4766

5
decayed

_1e-4
1e-4

Decayed
AdaGrad

1 Softmax 16 2813 4229

6 1e-4 1e-4 RMSProp 1 Softmax 16 2579 3689

7 decayed 1e-3
Decayed
AdaGrad

1 Softmax 16 2440 3584

8
layer_m

ax
2e-3

Decayed
AdaGrad

5 Softmax 16 2414 3572

9 origin 1e-3 RMSProp 1 Softmax 16 2428 3568

1
0

layer_pl
us

1e-3 RMSProp 3 Softmax 16 2413 3551

1
1

1e-2 1e-3 RMSProp 1 Softmax 16 2446 3546

1
2

decayed
_2e-3

2e-3
Decayed
AdaGrad

1 Softmax 16 2421 3533

1
3

layer_pl
us2e-3

2e-3 RMSProp 2 Softmax 16 2384 3514

1
4

layer2_
decay_1

e-3
2e-3

Decayed
AdaGrad

3 Softmax 16 2371 3497

1
5

2e-3 2e-3 RMSProp 1 Softmax 16 2406 3492

1
6

layer2_
2e-3

2e-3 RMSProp 3 Softmax 16 2364 3488

1
7

emb20 2e-3
Decayed
AdaGrad

4
Softmax
Sigmoid

20 2317 3385

1
8

layer2_
decay_2

e-3
2e-3

Decayed
AdaGrad

3 Softmax 16 2329 3383

1
9

layer3 2e-3
Decayed
AdaGrad

4 Softmax 16 2343 3379

2
0

sigmoid 2e-3
Decayed
AdaGrad

4
Softmax
Sigmoid

16 2321 3369

6. Conclusion

Fig.6.1 Evaluation of Models

After data elimination and cross validation, evaluation of models can be obtained (Fig.6.1).

The rank of the models is based on the sum of absolute values’ square. It is obvious that the

20th model with learning rate 2e-3, DecayedAdaGradOPtimizer, 4 hidden layer, emb_size 16,

SoftmaxActivation and SigmoidActivation can reach the highest accuracy.

Appendix

Codes for sum values’ calculation

#include <stdio.h>

#include <stdlib.h>

#include <cstring>

#include <string.h>

#include <string>

#include <cmath>

#include <fstream>

int re[335][30];

int ans[335][30];

#define INF 1000000000

using namespace std;

int main() {

 freopen ("result.txt", "r", stdin);

 for(int i=0;i<329;i++)

 {

 for(int j=0;j<25;j++)

 {

 scanf ("%d", &re[i][j]);

 printf ("%d", re[i][j]);

 }

 }

 freopen ("ans.txt", "r", stdin);

 for(int i=0;i<329;i++)

 {

 for(int j=1;j<25;j++)

 {

 scanf ("%d", &ans[i][j]);

 printf ("%d", ans[i][j]);

 }

 }

 int result1=0,result2=0;

 for(int i=0;i<329;i++)

 for(int j=1;j<25;j++)

 {

 result1+=pow((ans[i][j]-re[i][j]),2);

 printf ("\n%d", result1);

 result2+=abs(ans[i][j]-re[i][j]);

 printf ("\n%d", result2);

 }

 freopen("con", "r", stdin);

 system("pause");

 return 0;

Acknowledgement

We thank Head of Institute of Life Sciences – Professor Wei Xie （谢维）and Head of Chien-

Shiung Wu College – Professor Yinghui Kuang （况迎辉）for their great supports. We also

thank the volunteers: Jing Zuo （左静），Heng Fang （方恒），Longsheng Xu （徐陇

生），Mingya Wang （王明雅）for their kind help. Finally, we are appreciated for great

support from Southeast University.

