Solving Einstein’s Equations on a Computer:
A Brief Introduction to Numerical Relativity and the AMSS-NCKU
Optimization Project
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One hour ~ seven years
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An observation

Imagine | throw a stone from here with some initial speed; it will follow a trajectory and

land somewhere. "

A comparison

Neglecting air resistance, if | throw a larger stone, a feather, an apple, ... with the same
initial speed, they follow the same trajectory and land at the same place.
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Matter tells spacetime how to curve;
spacetime tells matter how to move
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Left-hand side: geometry (curvature of spacetime)

@ G,,: the Einstein tensor, built from the metric g, and its derivatives, encoding
spacetime curvature.

Right-hand side: matter (energy and momentum)

o T,,: the stress-energy tensor, describing energy density, momentum density/flux, and
stresses (pressure, shear) of matter/fields.

@ G: Newton's gravitational constant; c: the speed of light in vacuum.
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Write T, as a matrix

What are these S's?

@ p = Tgo: energy density (in an appropriate local rest frame).

@ S; = Tp;: momentum density / energy flux (i = x, y, z).

@ S;j = Tj;: stress-tensor components (pressure and shear).
y

Vacuum equation .

In a vacuum region (no matter or non-gravitational fields), one typically sets

T =0, => G = 0.
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Einstein tensor

Gmx D] R;u,/ T s Buy R, R = gaBchﬁ- |

R,..,: Riccl tensor

Obtained by contracting the Riemann tensor:

o
R,uu = K [y

8., metric tensor

Used to compute the line element (distance/time interval) and to raise/lower indices:

ds® = g dxtdx, gt ol = dithl
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Einstein summation convention

Rule (implicit summation)

o If an index appears twice in the same term (typically once up and once down), it is
implicitly summed over.

-

@ Indices that appear only once are free indices; free indices must match on both sides
of an equation.

4

3 3 | |3
AB =D AB, | gaddddi=) ¥ g dxitd.
=1

p=0r=0
asxs 2 A y

10 / 82



Start with Euclidean space: what is ds*?

In 3D Euclidean space, with Cartesian coordinates (x, y, z), the length of an infinitesimal
displacement (dx, dy, dz) satisfies

ds*¥ = dx* + dy? + dz°.

This means ds? measures the squared distance between nearby points, with equal weighting in all
directions.

Generalize to spacetime: the metric as a rule for measuring distance/time

Extend coordinates to spacetime x* (with x¥ = ct); in general one defines the interval by
ds® = g,,,,(x) dx*dx”
In flat spacetime g,y =M, = diag(—1,1,1,1), so

ds® = —c°dt* +\&%" + dy° + dz°.
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2D Intuition: a metric defines lengths

@ Gray circle: Euclidean metric ds? = dx° + dy?. The set of displacements (dx, dy) with ds® =1

forms a circle.

@ Blue ellipse: with ds® = 4dx? + dy?, the x-direction is weighted more, and the ds® = 1 set
becomes an ellipse.

Y 4

MV

Ellipse: 4dx® +dy? =1
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Contravariant/covariant: upper vs lower indices

@ Contravariant components: upper indices, e.g. a vector v”.

@ Covariant components: lower indices, e.g. v,,.

@ Two representations of the same geometric object; the metric relates them.

A simple example (flat spacetime)

If 2., = 0. = diag(—1,1,1,1), then

expanding v = g""v,, (Einstein summation): ' =g%w+ g%+ g%w + g%,

with g”" = n"" = diag(—1, 1,1, 1) this reduces to J'E gPvw=—w, Vv =g"vi=v(i=1,2,3).

W

4
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What i1s a covector?

@ A covector w acts on a vector v and outputs a number (a linear functional):

wlv) = wyv".

@ Linearity means: w(av + bw) = aw(v) + bw(w). ‘

@ Under coordinate changes, w,, transforms oppositely to v, so w, v" is an invariant scalar. J

A common example .

The gradient (differential) df of a function f(x) is a covector: for any displacement v*,

df(v) = v a,f,
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Riemann curvature tensor R”;,,,

Constructed from the metric (equivalently from the connection I'”,,,), it characterizes curvature:

Rpa,uv i aurpucr i avrp,ucr 'l' rpu)\rl\vo' TRl rpy)\r)\ucr- J

Levi—Civita connection (most commonly used in GR)

Uniquely determined by the metric (torsion-free 4+ metric-compatible):

[P = =g’ (@ng + Ov8us — aggw).
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Now you know the law that governs gravity.
In principle, you can compute any gravitational phenomenon.
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For example: black holes
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An observation

Imagine | throw a stone from here with some initial speed; it will follow a trajectory and

land somewhere. "

A comparison

Neglecting air resistance, if | throw a larger stone, a feather, an apple, ... with the same
initial speed, they follow the same trajectory and land at the same place.
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Increase the initial speed _

If | throw the same object faster, it will land farther away; if it is fast enough, it may even
escape Earth's gravity.

Light behaves the same way

If we shine a flashlight beam and nothing blocks it, the light keeps traveling—i.e. it can
escape Earth.

— “—

If gravity Is strong enough

If an object’s gravity is so strong that even light cannot escape, then it is a black hole.

What we call gravity is, in essence, the curvature of spacetime, governed by the equation we just
wrote down.
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GW150914: the first direct observation of a binary black-hole merger

@ On Sep 14, 2015, the two LIGO detectors (Hanford and Livingston) recorded an
extremely short signal almost simultaneously.

@ The signal came from the inspiral and merger of two stellar-mass black holes: masses
of order tens of solar masses, at a distance of order a billion light-years.

@ During the merger, energy equivalent to a few solar masses was radiated away as

gravitational waves (in a very short time).
— ads = 4

GW150914 parameters (rough numbers)

Component masses my ~ 36 Mo, my ~ 29 Mg

Final BH mass Mr ~ 62 M

Radiated energy AM =~ 3 M, (energy AMc?)

Distance D, ~ 410 Mpc =~ 1.3 billion light-years
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If playback fails in your PDF viewer: open GW150914.mp4.




How do we “discover” a binary black-hole merger?

© Measure tiny length changes with laser interferometers: as a G\W passes, the two
orthogonal arms stretch/squeeze in opposite ways, changing the interference fringes
(strain h ~ 10721).

@ Coincidence across sites: the same event appears with nearly the same waveform in
two widely separated detectors, with a millisecond-scale arrival-time difference (set by
the propagation direction).

© Matched filtering with theoretical waveforms: correlate the data against a large
bank of relativistic “template waveforms’ to extract the signal and estimate
parameters.

@ Statistical significance: estimate the false-alarm rate from background noise and
confirm it is extremely unlikely to be a noise fluctuation.

i

4

In one sentence ,

A binary black-hole merger is not discovered by “seeing light”, but by hearing
gravitational waves.

23 /82



What are gravitational waves?

What they are .

Gravitational waves are tiny ripples in spacetime geometry: when a gravitational field
changes rapidly, the disturbance propagates outward as a wave. I

How they are produced

The most typical sources are asymmetric accelerated motion of massive bodies, e.g.
inspiral and merger of binaries (especially BBH and BNS). As energy is carried away, the

orbit shrinks and the system eventually merges, producing the strongest GW signal. |

W

How they propagate and what they do

GWs propagate at the speed of light and pass through matter with negligible absorption or
scattering. Their effect is an extremely tiny relative stretching/squeezing of freely
falling test masses: when one direction is stretched, the perpendicular direction is
compressed (and vice versa), which is exactly what an interferometer measures. !
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Gravitational waves in the linearized theory (flat background)

@ Small perturbation around flat spacetime: g,,, = 71, + h,., with |h,, | < 1.

@ T[race-reversed perturbation: h,, = h,, — %mwh, where h = n®¥ hag-
@ Gauge condition: 8”77”,, =0} ‘
Under the linearized approximation and the gauge condition above, Einstein’'s equations become

= 16mG 1 & ,
hﬂ’l/ — C4 T;u./: — C2 atz I v '

In vacuum (T, = 0) we get the wave equation:

b =10,

* “
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Everything seems clear...

.

Binary BHs
inspiral & merge

J

Emit
gravitational waves

Propagate
across the Universe

l

Infer parameters
h X, D, ...

Reach Earth
(interferometers)
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But

This requires solving Einstein’s equations:

1
RW_EgMVR:O
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But this equation is hard to solve analytically

@ Strongly nonlinear: the metric appears everywhere and couples to itself; superposition
does not hold.

@ A coupled PDE system: spacetime dynamics must satisfy evolution equations and
constraint equations.

e Coordinate freedom (gauge): the same geometry can be represented by different
coordinates; choosing a good gauge is part of the problem.

@ Closed-form solutions exist only with high symmetry: e.g. static spherical
symmetry (Schwarzschild), stationary axisymmetry (Kerr), homogeneous and isotropic

cosmology (FLRW).
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Numerical simulation 1s extremely challenging

A historical comparison

@ General relativity was proposed in 1915; but only around 2005 did stable BBH merger
simulations break through (before 2005 it was long viewed as “unsolved”).

@ Kip Thorne (2000) said: “GW detection will be earlier than numerical simulation of black hole

collisions.”

e Wi R, <. iR e R D¢ AR R R A SN
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Numerical simulation 1s extremely challenging

Before 2005: why was stable evolution hard (especially BBH mergers)?

@ Formulation and constraints: the early ADM system easily excites unstable modes numerically;
constraint violations grow rapidly and then destroy the evolution.

@ Gauge (lapse/shift) was not mature: singularity-avoiding slicing often led to lapse collapse and slice
stretching; poor shift choices produced severe coordinate pathologies.

h

@ Singularities and moving BHs: excision requires robust horizon tracking and inner-boundary
treatment; early puncture methods were often “fixed punctures” and had trouble evolving through

merger.

@ QOuter boundary conditions: reflections and constraint injection from a finite boundary contaminate
the strong-field region and trigger instabilities.

@ Multiscale dynamics and limited computing power.

Typical symptom back then: very short evolutions

@ From Hahn—Lindquist (1964) through the 1990s—2000s, 3D BBH simulations often lasted only tens of
time units: Anninos et al. (1995), Brugmann (1999) ~ 35 t.u., Brandt et al. (2000) ~ 50 t.u., etc.
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Numerical simulation 1s extremely challenging

Around 2005: what changed?

@ Better-posed evolution systems: generalized harmonic (GH) and BSSN, together with constraint
damping and improved discretizations, strongly suppressed unstable growth.

@ Gauge breakthroughs: e.g. 1 + log lapse and I-driver shift (moving puncture) mitigated coordinate
stretching, enabling stable motion and mergers.

@ More practical singularity treatment: excision in the GH framework became more robust; moving
puncture avoids an explicit inner boundary.

@ Algorithms and compute caught up: AMR, parallel frameworks, and larger compute budgets enabled
long, high-resolution evolutions.
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Numerical simulation 1s extremely challenging

Key milestones in numerical relativity (stability problem / BBH)

Early: short evolutions

1964:

Hahn—Lindquist (one of the earliest BBH

attempts)

1995:
1999:
2000:
2001
2004

t.u.

Anninos et al. (PRD 52, 2059)

Brugmann (IJMP D 8, 85), ~ 35 t.u.
Brandt et al. (PRL 85, 5496), ~ 50 t.u.
Baker et al. (PRL 87, 121103), ~ 100 t.u.
Brugmann et al. (PRL 92, 211101), ~ 150

Breakthrough: stable mergers begin

2005: Pretorius (PRL 95, 121101), stably!!

2006: Campanelli et al. (PRL 96, 111101);
Baker et al. (PRL 96, 111102)

2007: Penn State (CQG 24, S33); AEI (PRL

09, 041102)

2007-2008: Jena/Brugmann (PRD 76,
104015; PRD 77, 024027)

2008: Tokyo (PRD 78, 064054)
2008: Our group (PRD 78, 124011)

b
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Numerical simulation 1s extremely challenging

Milestone results
@ Pretorius (2005): GH + constraint damping + excision + AMR; first stable BBH evolution through
Inspiral-merger—ringdown.
@ 2005-2006: “moving puncture” BSSN (Campanelli et al.; Baker et al.) made BBH merger simulations
a reproducible standard tool.

Just 10 years later, in 2015, we observed gravitational waves from a binary black-hole merger.
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Numerical Relativity: From Setup to Observation

Overall goal: from “physical setup” to “observable predictions”

@ Solve Einstein’'s equations on a computer to obtain a spacetime evolution and ultimately
produce observables (e.g. GW waveforms).

—_—— — w ™ _)

fPhysicaI setup system (BBH/BNS/NS—-BH), matter model, boundary/symmetry as-
sumptions

[Initial data (elliptic constraints) solve constraint equations = consistent initial data ]

!

L
Time evolution (hyperbolic system) choose formulation/gauge; evolve stably to obtain
a discrete spacetime

il
Observables and comparison extract 14, h, etc. = waveforms/parameter estimation;
compare with detector data

N

.

,
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Problem setup: realistic vs solvable

From physics to solvable: reality vs tractable

@ The problem must be realistic enough (BBH, NS-BH, ...) while also numerically tractable
(boundaries, matter models, approximations/assumptions, ... ).

@ More realism = more complex equations and larger scale separations = higher computational |
cost and more sources of error. |

Common trade-offs (examples)

@ Use a simpler matter model /EQOS, or ignore magnetic fields, neutrinos, radiative feedback, etc.
as a first step.

@ Use more idealized initial conditions/symmetry assumptions to gain controllability and
resolution, then add more physics gradually.

- - —~_— —_—

In practice, numerical relativity balances “realistic’ and “tractable”.
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Constraints and evolution: elliptic + hyperbolic

Equation structure: elliptic + hyperbolic

Elliptic part (constraints) Hyperbolic part (evolution)

@ Construct constraint-satisfying initial data. @ Evolve in time from the initial data to obtain a

@ Typically a globally coupled boundary-value dicrete spateime evo utinn.

problem; handle infinity /outer boundaries and @ Wave-equation-like: emphasize strong
multi-BH topology. hyperbolicity, stability, and constraint control.

T - ')

—

Key difficulty 1. Formalism / Gauge

@ General relativity has coordinate freedom: the same physical spacetime can be represented by different
coordinates.

@ Different formulations/gauges affect hyperbolicity, constraint growth, and numerical stability; a bad
choice often “crashes immediately”.

— - -
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Waveform extraction and engineering

Key difficulty 2: Gauge & finite-radius extraction

@ Ideally, GWs are defined at future null infinity Z, but numerically we can only extract at finite radius.

@ Extrapolation or CCE (Cauchy—Characteristic Extraction) is used to reduce waveform contamination
from gauge, outer boundaries, and finite-radius effects.

Engineering challenges: numerical methods and coding

@ Stability (CFL), discretization and dissipation, AMR, boundary conditions, parallelism, and performance
tuning decide whether it runs at all and how accurate it is.

@ Ultimately: discrete spacetime solution — extract observables (h, 14, ...) — draw physical conclusions
and compare with observations.

S <
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Formalism problem

Start from Einstein’s equations

1
G2 = Rap 2Rgab = 87 K- |

But first rewrite 1t into a form

{coordinate expansion: ADM, BSSN, GHG, ...
Q

tetrad expansion: Ashtekar, Friedrich—Nagy, ...

4 3+ 1 form: ADM, BSSN, NOR, ...
four dimensional form: GHG, Friedrich—Nagy, . ..

@ constraint correction: ADM — BSSN — Z4c — - --
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Variables: coordinate vs tetrad

Coordinate expansion (metric variables) Tetrad expansion (tetrads / spin
@ Evolve g, directly (with lapse/shift, harmonic ConneCtion)
gauge, etc.). @ Describe geometry using tetrads such as e,
@ Examples: ADM, BSSN, Z4c, GHG, ... (or equivalent variables).
@ Pros: relatively straightforward to implement; e Ex.am;.)les: Ashtekar variables, the
mature ecosystem (AMR and waveform-extraction Friedrich—Nagy system, ...
toolchains). @ Highlight: some constructions yield symmetric

hyperbolic systems and more controlled
boundary treatments; but with more variables
and more complex gauge freedom.
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Choosing a formulation: hyperbolicity and constraint control

3+ 1 form vs 4D form

3+ 1 (Cauchy) 4D (harmonic / generalized harmonic
@ Decompose spacetime into spatial slices evolving @ Write the principal part as a 4D
In time: constraints + evolution equations. wave-equation-like system, emphasizing
@ Typical: ADM, BSSN, NOR, Z4c, CCZ4. ... well-posedness and boundary conditions.

@ Typical: GHG, Friedrich—Nagy, ...

Why do we need constraint correction?

can trigger and amplify constraint violations.

@ By rewriting variables/equations and adding constraint damping/propagation (e.g. BSSN, Z4c/CCZ4,

GH + damping), “constraint growth” becomes a controllable mode.

H

@ In the continuum, constraints should remain satisfied if they are satisfied initially; discretization errors
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341 ADM decomposition (Arnowitt—Deser—Misner)

Foliation and metric split

@ Choose a time function t and foliate spacetime: ant ot A
*‘M~R x X;. A /
@ The metric can be written as f

ds® = —a’dt? + ~; (dx' + B'dt)(dx’ + ' dt),

where « is the lapse, 3’ the shift, and vii the spatial metric
on Zt. t“’ — an'u' _|_ /6“’

@ Introduce the extrinsic curvature Kj;(t,x) to describe how
slices embed in spacetime; it measures the rate of change
along the normal:

1 1
Kij =75 LnYi = —5- (0 — Lp)vi.

- L ) T

Lie derivative (how to compute it)

For the shift 3', the Lie derivative of the spatial metric
(coordinate components) is: 41/ 82




ADM: 12 evolution equations and 4 constraints (vacuum)

Constraints

H: =R+ K ~PX'~0, M :=Vi(K'—+"19a 0.

(O — La Y = —2aK;,

((9t i ﬁ;—})Kg — —V;V_;Ot —+ CJ:(RU -+ KK{; E 2K;mej).
1181 S U T 00 S 5 S A S S 0 0 g T S 0 0 8 0 8 i 0y S 8 1 1 0 S A )

4 + 6 + 6 = 16 variables to be solved 12 + 4 = 16 equations to be solved

Coupled elliptic—hyperbolic equations, although complicated but seems consistently solvable

Constraints must be controlled: numerical errors excite constraint violations, and stability depends strongly
on the formulation/gauge.
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Constrained system

The 16 equations are not independent

@ In the continuum theory, if constraints are satisfied, the evolution “preserves’ them (the
constraint-propagation system closes; related to the Bianchi identities). .

@ Therefore, one can equivalently choose 12 of the 16 equations as evolution equations; the
remaining 4 are constraints (for initial data, boundaries, and error monitoring).

Why do we typically choose 12 evolution equations?

@ For simplicity and efficiency: time evolution uses a purely hyperbolic evolution system.

@ Constraints are mainly used to construct initial data and to monitor/control errors.

— LA S - -
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Constrained system

12 independent equations < 16 variables: why is it still consistent?

@ This is not an inconsistency: general relativity has 4 coordinate degrees of freedom (gauge
freedom). |

@ In other words, 4 variables should be free (set by gauge conditions) for the system to be
self-consistent.

4

Which variables are gauge? _

@ In the 3 + 1 split, the gauge variables are precisely the lapse o and shift 3’ (geometrically: how
slices advance).

@ In principle o, ' can be specified freely; in practice we use gauge conditions (e.g. 1 + log,
[-driver, harmonic gauge) to close the system and improve stability.
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Constrained system

Key numerical difficulty

@ Continuum level: 12 variables <+ 12 evolution equations; if constraints are zero initially they
should remain zero.

@ After discretization, constraints are not guaranteed to be preserved (truncation error, n
outer-boundary reflections, discretization inconsistencies can generate violations).

> _a

@ It then looks like 12 variables must satisfy 12 + 4 conditions (over-determined), so we must
explicitly control constraints.

- ™ -— W -

Can we build a constraint-preserving scheme?

@ Goal: keep constraint violations from growing (or damp them), and avoid injecting constraint
errors at the outer boundary.

@ Common strategies: better formulations (BSSN, Z4c/CCZ4, GH + damping), constraint
damping/adjustments, constraint-preserving boundary conditions, and sometimes constraint

projection.
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Boundary treatment

o Real physical system: no boundary (not possible for numerics)
o Compactify — energy piles up
o Artificial boundary (how to set boundary conditions)

e Radiative boundary condition
[Shibata and Nakamura PRD '95]

Fortunately, it is STABLE!

but 1t Introduces extra error!

46 / 82



Outer boundary conditions: why are they tricky?

Numerics live on a finite domain

@ The physical system is open: GWs propagate to infinity, and ideal observables are defined at
infinity (Z7).

@ A Cauchy evolution must be truncated at finite radius r = R, introducing an artificial outer
boundary; boundary treatment directly affects stability and accuracy.

> _a

An ideal outer boundary should do all of the following

@ Absorb outgoing waves: minimize reflections (reflections contaminate the strong-field region
and can trigger instabilities).

@ Preserve constraints: do not inject constraint-violating modes (otherwise constraint errors
grow).

@ Be gauge-compatible: gauge waves/coordinate effects also reach the boundary; avoid
pathologies caused by “coordinate reflections”.
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Radiative boundary condition (Sommerfeld type)

ldea: treat variables as approximately spherical outgoing waves

Pros and limitations
@ Pros: easy to implement; often provides a numerically stable outer boundary (especially in the
far zone / weak-field regime).

@ Limitations: not perfectly absorbing—non-spherical /low-frequency components reflect;
near-zone strong-field and gauge coupling introduce systematic errors.

@ Practical strategy: place the boundary far away (with AMR) + use constraint-preserving
boundary conditions (CPBC) or CCE/extrapolation to reduce waveform error.

D e -_TT-_—
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Treatment of physical singularities

o Kinds of quantities diverge (oc) when we approach physical singularity.
The region near singularity must be ruled out from numerical computation.

o Fill black holes with special data (puncture)
Fill what, how to fill?

o Cut directly (excision)
How to treat the inner boundary?
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Puncture method

Core idea: isolate the singular part analytically

@ In initial data construction, treat a BH as an additional asymptotically flat end
(wormhole/puncture). One often writes

m
/’p:wsing‘FUa 7psing:]-‘l'z:_&a
a

where u is the regular part solved numerically.

@ With suitable gauge (e.g. 1 + log lapse + [-driver shift), the slice avoids the singularity: the
lapse collapses near the puncture and the geometry approaches a trumpet.

@ Pros: no inner boundary; relatively simple; well-suited to BBH (moving puncture, widely used
since 2006).

H
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Excision method

Core idea: excise the singular region from the grid

horizon

@ Choose an inner boundary r = re inside the (apparent)
horizon and remove interior grid points (excision).

@ If rec lies inside the apparent horizon (AH), no physical
information can propagate out of the BH: the inner
boundary is pure outflow, so in principle no incoming

boundary conditions are needed.
characteristics

@ Key challenges: track moving BHs/horizons; keep the go inward
excision surface inside the AH: maintain numerical
stability of gauge/constraint modes at the inner
boundary.

@ Typical use: common in generalized harmonic (GH)
formulations (e.g. Pretorius 2005).
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Evolution PDE system for Einstein’'s equations (BSSN + gauge)

0 = — (aK — i) + B0y
0:K = —D'D;cx + a(AH;jAHU 1 %K2) + B'0: K,
0y = —205 + 25,98 — <0k + B0y,
StA",-j = —e_4¢'(D,-DJ-a — aR,;,-)TF - O:(KAH{'; = 2A~kaij) T 2A~k(i8j)5k
~ SAs0B* + 6 0y,
O = —2AY9;a + 2ax (F"J-kA”f“ — %fy"i"ajK + 6A"’3"8j<?3)
+ RO + Ao + BT — Fop + STep

Ora = —2aK + B'8;a,
NNy ol il
O = ZB’ + 808,
OB =o' — por' —nB' + 36,8’
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Why so expensive? (tens of thousands of FLOPs per grid point per step)

Where does the cost come from?

@ Many tensor variables must be updated at every grid point (e.g. f?g,ﬁg, [ ¢ K and o, §', B").

@ The RHS contains many spatial derivatives: first order (9;), second order (D;D;), and the
Christoffel symbols/derivatives needed to build Rj;.

@ Discretization typically uses finite differences or spectral methods: each derivative implies a
stencil /transform, plus AMR, boundary conditions, and parallel communication.

Engineering takeaway .

@ To evolve “stably + accurately + for a long time”, you must work on both formulation/gauge
and numerical algorithms/implementation (dissipation, AMR, parallelism).

— ——

4
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Parallelized mesh refinement

@ Several scales involved

v" black hole (1) = Ax ~ 0.01
V' separation of black holes (10)

v wave length of gravitational wave (50)
V' asymptotic region (1000—10000)

@ Computationally expensive on every grid point
(less grid points, much more levels)

Why do we need AMR + parallelism?

@ You cannot use the smallest Ax everywhere: the number of grid points would explode.

@ AMR concentrates high resolution in the strong-field region (near the BHs), uses coarser grids

in the wave zone / asymptotic region, and distributes grid blocks across many cores/nodes via
domain decomposition.
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Mesh refinement (example)

Example only, usually 12—-16 levels Take advantage of spacetime symmetry

1.4
1.2

0.8
0.6
0.4
0.2
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Is the run stable? (online monitoring)

Most important: constraint monitoring (4 constraints)

@ At each step, compute the Hamiltonian constraint H and the 3 momentum constraints M; from
the numerical solution (v;;, Kjj, o, 3, .. .).

@ Monitor norms (e.g. L, and L, ): a stable run should not blow up exponentially and should |
decrease systematically with increasing resolution.

@ A stricter check: run multiple resolutions and verify ||H|| ~ O(AxP) (order p) convergence of
constraint violations. I

LS B - T

What else to monitor? (numerical 4 physical diagnostics)

@ Convergence: convergence order of key quantities (waveform phase/amplitude, horizon
mass/spin, orbital phase) across resolutions.

@ Conservation/consistency: time evolution of ADM mass/angular momentum should match
radiated energy/angular momentum (from waveform extraction), with no unphysical drift.

@ Gauge and boundaries: lapse collapse, coordinate stretching, and outer-boundary reflections
contaminate constraints/waveforms; monitor incoming constraint flux and reflected signals near

VDTSRl o) TN AR it S S PQ




Four constraints: Hamiltonian + Momentum

Constraint equations in the 3 + 1 decomposition (vacuum RHS = 0)

H = R+K2—K;J-K‘f"—167rp"‘r-:‘0,
M; = Di(K!; — & ;K) — 8nS; =~ 0, i=1,223

Lo T

Common numerical monitors (on a discrete grid)

1/2 L.

|Hll2~ | Y H*AV | ,  Ml2~ | ) A "MiMAV | | Hlloo = max|H]
grid grid

@ Often normalize (e.g. divide by a representative curvature/derivative scale) and compute
level-weighted statistics across AMR levels.

@ With excision, measure outside the excised region; with punctures, pay special attention to
constraints near the strong-field region and in the wave zone.
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Gravitational Waves

Fallback: open GW_GW150914.mp4.




Source tree and language stack

@ Focus here: amss—-ncku-python/AMSS_NCKU_source
@ Typical split by language

o C/CH++: framework, class wrappers, Patch/AMR management, MPI orchestration,
diagnostics workflow

o Fortran 90: high-order finite differences, RK time stepping, prolong/restrict, dissipation
and other numerical operators

o CUDA: GPU acceleration for selected BSSN hot kernels

@ Goal: stably and efficiently evolve BSSN/Z4c (and extensions) on AMR + MPI
(optional GPU), and output physical diagnostics
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Layered architecture: physics to parallelism

Evolution equations and physical models
bssn_class.*, Z4c_class.* bssnEM_class.* 6K bssnEScalar_class.x

:

Spatial discretization and stabilization
high-order centered FD: diff new*.£f90 KO dissipation: kodiss.f90

Y

Time integration
explicit RK4: rungekutta4 _rout.£f90

Y

f : : )
Grid/AMR and inter-level operators
patch _system.*, patch.#%, patch_interp.*, prolongrestriet*.£90 )
i Parallelism and acceleration I
\ MPI: Parallel.* GPU: bssn_gpu.cu, bssn_gpu_class.*
| Diagnostics and horizons I
| BH_diagnostics.*, find horizons.*, surface_integral.* i
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Directory structure and functional layers (by module)

Evolution equations and physical models Grid and AMR

@ bssn_class.C/.h @ Patch management: patch_system. *,

%
® Z4c_class.C/.h patch

O lon: ' %
@ bssnEM_class.*, bssnEScalar_class.* Interpolation: patch_interp

@ Prolong/restrict: prolongrestrict*.£90

Time integration and finite differences

® RKZ\mifgekuttad_rout.£90 Initial data, constraints, and diagnostics

@ Initial data: TwoPunctures. *,
initial_x*x.f90

@ Derivatives: diff newx.f90

@ Dissipation: kodiss.£90 |
@ Constraints: bssn_constraint.f90,

adm_constraint.f90

@ Diagnostics/horizons: BH_diagnostics. *,
find_horizons. *
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Computational principles (high-level view)

Numerical relativity in a 34+1 formulation (BSSN/Z4c): evolve metric and curvature
variables on a discrete grid

Spatial derivatives: high-order centered finite differences (accuracy) + Kreiss—Oliger
dissipation (stability)

Time stepping: explicit Runge—Kutta (typically RK4)

AMR: block-structured patches; inter-level consistency via prolongation and restriction
operators

Parallelism: MPI domain decomposition; selected kernels have GPU implementations
for speedups
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Key algorithm flow (simplified)

Initialization

© Read parameters and physical setup; construct initial data (e.g., Two-Puncture)

@ Build the block-structured AMR grid and register boundary/interpolation /inter-level
rules

Per time step (main loop)

© Compute spatial derivatives: high-order differences + numerical dissipation
@ Advance evolution equations with RK4 (multiple stages)

© AMR operations: prolong/restrict; synchronize boundaries (ghost zones) across MPI
ranks

© Output/update diagnostics: constraints, horizons, waveforms, etc.
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AMR: Patch system and inter-level operators

@ Patch responsibilities: manage blocks per refinement level, neighbor relations, ghost
zones, and boundary conditions

@ Inter-level consistency: coarse—fine prolongation and fine—coarse restriction

@ Implementation entry points: patch_system.*, patch_interp.*,
prolongrestrict*.£90
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AMR: schematic

1.4
1.2

8.8
8.6
0.4
8.2
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Parallelism and acceleration: MPI + (optional) GPU

@ MPI: decompose the domain by patches/grids; boundary exchange and synchronization
typically appear in each RK stage

o GPU: offload selected BSSN hot kernels to CUDA (e.g., bssn_gpu.cu), integrated via
bssn_gpu_class. *

o Typical bottlenecks: ghost-zone exchange (communication/synchronization) and
FD /dissipation loops (memory bandwidth /compute)
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Optimization levers (aligned with current implementation)

Cache and vectorization: improve data layout (SoA or hybrid) and enable explicit
vectorization for hot loops in diff _new*.f90 and bssn_%

Parallel scaling: add OpenMP for hot loops; use non-blocking MPI to hide
halo-exchange latency

GPU coverage: offload remaining constraint/dissipation operators; reduce CPU+GPU
transfers

Time-step control: add an optional adaptive Courant factor (constraint/error driven)
without changing default behavior

Diagnostics scheduling: parallelize/async horizon and constraint measurements to
reduce global synchronization
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BH_Trajectory_XY.pdf: black-hole trajectories in the XY plane

Data source: bssn_BH.dat from the simulation output directory
What is plotted: each black hole's 2D trajectory (X;(t), Yi(t))
Axes: X[M] vs. Y[M] (units normalized by the total mass M)

e Convention: different black holes are shown with different colored curves (e.g.,
BH1/BH2)

@ How to read it: transitions from a slow inspiral to the post-merger settling/ringdown
region
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BH_Trajectory_21 XY.pdf: BH2 displacement relative to BH1

Data source: bssn_BH.dat

What is plotted: the relative displacement Ary1(t) projected onto the XY plane
Coordinates: (AX,AY) = (Xg — X1, Yo — Yl)

Interpretation: removes overall drift and highlights the shrinking orbital separation and
pre-merger relative motion

e Practical note: if BH1/BH2 are output at different times, interpolate to a common
t-grid before differencing
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ADM_Constraint_Grid_Level_0.pdf: constraint monitoring on the outer
grid

@ Data source: bssn_constraint.dat

@ What is plotted: ADM constraint measures on grid level 0 (the outermost level) versus
time T|M]|

o Curves: H, Px, Py, P;

@ Physical meaning:

e H: Hamiltonian constraint
o Py, P,, P,: momentum-constraint components along x,y, z

@ Axes: time T|M] vs. ADM constraint value

@ How to read it: smaller is better; growth /spikes often indicate accumulated numerical
error, boundary issues, or AMR synchronization problems
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