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Embodied Intelligence Overview

Embodied AI: Aligning Cyber Space with Physical World

Embodied Robots Simulators Embodied Perception Embodied Interaction Embodied Agent

} } ! ! !

Fix-base Robots,

Active Visual Exploration,

Wheeled &Tracked Robots, General Simulator, 3D Visual G di Embodied Question Embodied Multi-modal
Quadruped Robots, Real-Scene based Visual Llsua ro;n e Answering, Foundation Model,
Humanoid Robots, Simulator, e a-nguage “"'?“““n’ Embodied Grasping, Embodied Task Planning,

. e . Non-Visual Perception,
Biomimetic Robots,

Sim-to-Real Adaptation

|

Embodied World Model, Data Collection and Training, Embodied Control

Applications  Robotics Autonomous Driving Healthcare Domestic Assistance Industrial Automation Search and Rescue



Embodied Intelligence Overview
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Fig. 2. The overall framework of the embodied agent based on MLMs and WMs. The embodied agent has a embodied world model as its “brain™. It has
the capability to understand the virtual-physical environment and actively perceive multi-modal elements. It can fully understand human intention, align with
human value, decompose complex tasks, and execute accurate actions, as well as interact with humans and utilize knowledge bases and tools.




Embodied Intelligent Robots
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Fig. 4. The Embodied Robots include Fixed-base Robots, Quadruped Robots,
Humanoid Robots, Wheeled Robots, Tracked Robots, and Biomimetic Robots.
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VLA Model

The idea of VLA is to help robots interpret what they see, understand instructions, and act in the physical world. To
do this, VLAs combine perception, language understanding, and control in a single system. They push robot

learning toward foundation-model-style control, where just one model can handle many tasks by leveraging
pretrained multimodal knowledge.

Most VLA models are built around three core components:

* Vision-Language backbone: VLAs typically start from a large Vision Language Model (VLM) pretrained on

image—text data. VLMs already know how to recognize objects, understand text, reason spatially, and even
solve math problems.

* Action interface: On top of the VLM, VLAs add a mechanism to produce robot actions. Depending on the

design, this can be direct action prediction (continuous control), action chunks or trajectories, or structured
action representations learned from demonstrations.

* Multimodal inputs: VLAs usually condition on camera images, natural language instructions, and often
robot state like joint positions, gripper state, and others.

A good VLA model should accomplish two missions well: preserve open-world reasoning from the VLM, and
correctly turn that reasoning — what a robot sees and is told — into actions.



VLA Model Evolution
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Figure 1: VLA models, datasets, and contributing institutions from 2022 to 2025. The top row presents major VLA models
introduced each year, alongside their associated institutions (logos within red boxes). The bottom row displays key datasets used
to train and evaluate these models, grouped by release year. The figure highlights the increasing scale and diversity of datasets
and institutional involvement, with contributions from academic (e.g., CMU, CNRS, UC, Peking Uni) and industrial labs (e.g.,
Google, NVIDIA, Microsoft). This timeline highlights the rapid advancements in VLA research.
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Classification of VLA
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Fig. 1: Illustration of core advantages of large VLM-
based Vision-Language-Action (VLA) models for robotic
manipulation. Large VLM-based VLA models leverages
the strengths of large Vision-Language Models (VLMs),
including (1) open-world generalization, (2) hierarchical
task planning, (3) knowledge-augmented reasoning, and (4)
rich multimodal fusion. These capabilities empower diverse
robotic arms and significantly enhance robotic intelligence.



Classification of VLA
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Fig. 3: Comparison of the two principal categories of large VLM-based VLA models. Monolithic models (Sec. 3) integrate
perception, language understanding, and action generation within single- or dual-system architectures, with the latter
incorporating an additional action expert. In contrast, hierarchical models (Sec. 4) decouple planning from policy execution
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through interpretable intermediate outputs (e.g., subtasks, keypoints, programs, affordances).



Classification of VLA

TABLE 1: Single-system VLA models. In the LLM / VLM column, omission of the V-Encoder indicates a VLM; otherwise, it
represents an LLM. In the Learning column, “AD” denotes Autoregressive Decoding and “PD" denotes Parallel Decoding.
“SFT” denotes fine-tuning distinct from action-prediction imitation learning, where tasks like captioning, VQA, reasoning

d others all qualify as SFT. “A” and "B" i th t the learni thod d by Action head or Backbone.
andoRen ety as an 1 paertheses feplesent the Jeamiig methods used By Adtion iead or Backbone TABLE 2: Dual-system VLA models. The “System 2 Backbone” column lists the VLM backbone used as the System 2

component in dual-system methods. The “System 1 Learning” column lists the learning methods used by the action

Model V-Encoder LLM / VLM Learning Contribution : : : : :
experts as System 1. “Diff.” denotes diffusion-based learning, “FM"” denotes flow-matching, “MSE” denotes mean squared
Classic Paradigm: Autoregressive Decoding i i 3 P pett L =
error, “BCE” denotes binary cross-entropy, and “AR” denotes autoregressive learning.
RT-2 [27] - Pall-X / PaLM-E AD (A), SFT (B) Represent actions as VLM tokens to enable generalization.
RT-2-X [90] ViT-22B UL2 AD (A), SFT (B) Fine-tune on cross-robot data for positive skill transfer. T
OpenVLA [(] DINOV2 + SigLIP LLaMA2.7B AD (A) Open-source 7B-parameter VLA model for generalist robot control. e 5o fg::;‘;; Coutdbubion
tvati Perf Enh +
Paradigm Der Model F TR O LT
LES;%;T [ g DINCC?\:'];N:'“ LB LVicunn-i’:B ::[[; (:} ! zg (g) Combine :'bi;d-,cm:r:;3D fetallum:h\:ith LL:I for aclti::m.b i DP-VLA [124] OpenVLA Regression Propose a dual-system architecture for robot manipulation with efficiency and performance.
oT [15] AR LaMA2- (A, SEL(R) T ncarporgte cham-of-thoughtho enhance Policy:Caplataablity RoboDual [127] OpenVLA Diff. Combine a VLA-based generalist for reasoning and a DIT specialist for control.
ReVLA [V0] DINOv2 + SigLIP LLaMA2-7B AD (A) Reverse backbone gradually to preserve visual generalization. - . _ - - "
TraceVLA [97] DINOV2 + SigLIP L 278 AD (A) P T o et e LCB [126] LLaVA Diff. Leverage an added special token to encode VLM reasoning and act as conditions for policy.
FuSe [+4] - PaliGemma-3B AD (A), SFT (B) Leverage natural language for cross-modal fine-tuning. GROOT N1 :] Eagle-2 FM Combine a VLM and DT for hmmmd mbdl'.s manipulation. I :
UniAct [29] R LLaVA-0.58 PD (A) PHOpOSE Liiiveisal ASEEn apacs for VersaBle A AdAPEVE CoREo] CogACT [127] OpenVLA Diff. Propose an action ensemble algorithm to integrate the action diffusion process into VLA.
Spatial VLA [100] SigLIP Gemma2 AD (A) Improve generalization via 3D encoding and action grid. HIRT [125] Instucthlle Regression Propose a dual-system model with System 2 running ata lower frequency.
UP-VLA [101] VIiT + VQ-GAN Phil 5-138 AD (A), SET (B) Propose unified training for semantic-spatial understanding, Fast-in-Slow [ 1] Prismatic Diff., AR Propose a unified dual-system model that embeds fast execution within a VLM-based reasoner.
VLAS [117] cLP Vicuna-7B AD (A),SFT(B)  Introduce voice modality to VLA and construct a paired dataset, Openklelic [56) Liaya s Conduct auxiliary iaiing on the ioken ncging VIS anipoiicy.
HybridVLA [ 1] DINOV2 + SigLIP LLaMA2-7B Diff,, AD (A) Integrate diffusion and autoregressive policies to improve success. ChatVLA [129] Qwen2-VL Diff. Unifie vision-language-action via MoE-shared attention with separate perception/control FFNs.
CoT-VLA [37] E VILA-U AD+PD(A), SFT(B)  Propose a visual chain-of-thought to improve planning,. ChatVLA-2 [170] Qwen2-VL Diff. Enable open-world robotic reasoning via dynamic MoE routing and Reasoning-Following MLFP.
VTLA [103] = Qwen2-VL-7B AD (A) Integrate visual and tactile inputs to improve task sticcess. Diffusion-VLA [171] Qwen2-VL Diff. Merge Qwen2-VL reasoning with diffusion actions via FILM-modulated reasoning injection.
OQE-VLA [104] SigLIP Qwenl.5-7B AD (A), SFT (B) Introduce four open-ended tasks to expand interaction modalities. TrVLA [11] Eagle-2 Diff. Introduce a world-dynamics perception module as system 3 to complement static perception.
ReFineVLA [105] SigLIP Gemma?2 AD (A), SFT (B) Propose reasoning-aware framework to fine-tune VLAs effectively. GF-VLA [177] LLaMA 2 Regression Enable interpretable bimanual manipulation via information-theoretic graphs from human videos.
LoHoVLA [10¢] SigLIP Gemma-2B AD (A), SFT (B) Address long-horizon tasks via hierarchical closed-loop control. Rational VLA [174] LLaVA-v1.5 Diff. Introduce a learnable latent interface to enable instruction rejection for robust manipulation.
BridgeVLA [ 7] SigLIP Gemma PD (A), SFT (B) Project 3D data into 2D space for efficient action prediction VQ-VLA [135] OpenVLA VQ-VAE Develop a vector quantization-based action tokenizer for efficient and smoother control.
Unified VLA [117] - Emu3 AD (A), SFT (B) Convert all input signals into tokens to build a unified model. TinyVLA [15¢] LLavA Diff. Demonstrate that high-performance VLAs require no large-scale robotic pretraining.
WorldVLA [ 4] - Chameleon AD (A), SFT (B) Combine world and action models for bidirectional improvement. Parallel-based
4D-VLA [105] - InternVL-4B PD (A) Integrate 4D spatiotemporal cues for efficient VLA pretraining. S
VOTE [109] DINOv2 + SigLIP LLaMA2-7B PD(A) Introduce voting strategy to increase action prediction accuracy. mo [29] PaliGemma FM Combine a pre-trained Vision-Language Model with a Flow Matching-based Action Expert.
ST-VLA [110] = PaliGemma2 AD (A), SFT (B) Project visual traces onto depth maps for better understanding, mo-FAST [123] o AR Propose a DCT-based action tokenization enabling efficient autoregressive VLA training.
Paradigm Deri Inf Efficiency Opti mo.5 [30] PaliGemma FM Convert high-level prompts into more fine-grained subtask predictions before feeding into mg
hd - wo.5-KI [17] PaliGemma FM Prevent gradients from the action expert from flowing into the VLM backbone during training,
RoboFlamingo viT MPT-1B PD (A), SFT (B) Decouple design to adapt open-sourced VLM for robotic control. ForceVLA [177] o Diff. Treat force sensing as a first-class modality via MoE, improving contact-rich manipulation.
{1131 . ) ) ) SmolVLA [31] SmolVLM-2 FM Propose a lightweight VLA with frozen SmolVLM-2 and flow-matching transformer.
RoboMamba [112] CLIP/ S:gll.ﬂ'-' ViT-L Mamba-2.88/1.4B PD (A), SFT (B) Introduce the M.amba ard'!ﬂecmre to t?le VLA field. OneTwoVLA Ji38] 2 ™M Integrate acting/reasoning in shared VLA backbone processing multi-view inputs.
Dee‘i;]_g}___lr I_ : Df;]‘g;’ﬂs“f }jp Tﬁr;i;;: Eg (i) Propose drynamlc earllyﬂut t:{e:l;:::f;:me gvemead. Tactile-VLA [139] g FM Integrate tactile sensing to enable force-aware, generalizable contact-rich manipulation.
]PD-VLA [ [] 1 CLIP ;'Tllg_ i 5 S'TB 0 EA; T dper onnal;wiedwa gpt.’n i prmy :}-hm:)r:\gt ol GR-3 [140] Qwen2.5-VL M Combine VL data and few-shot trajectories for robust manipulation in long-horizon or unseen tasks.
13 8 i icunal.o- roduce paraliel decoding manner Ior faster ro conitrol. Ma i 7t : . . : T s 3 i
MoLe-VLA [111] DINOv2 + SigLIP LLaMA2-7B PD (A) Reduce computation via dynamic LLM layer activation. villa-X [141] PaliGemma FM Integrate proprioceptively grounded latent actions and robot actions in a joint diffusion process.
NORA [45] - Qwen2,5-VL-3B AD (A) Build efficient low-parameter model to boost performance.
FLashVLA [117] DINOv2 + SigLIP LLaMA AD(A) Propose retraining-free acceleration to improve VLA inference.
BitVLA [116] SigLIP b1.58 BitNet b1.58 2B4T PD (A), SFT (B) Build ternary weight model to reduce deployment memory cost.
Spec-VLA [117] DINOv2 + SigLIP LLaMA2-7B PD (A) Propose speculative decoding to speed up without success drop.




assification of VLA

TABLE 3: Hierarchical VLA models. The “Type” column denotes the output type of the planner, where “K” represents
Keypoint, “S” represents Subtask, and “P” represents Program. The “Learning” column specifies the learning method
adopted by the model, where “SFT” refers to Supervised Fine-Tuning, “RL” denotes Reinforcement Learning, “IM”
indicates Imitation Learning, and “API1” is a special case referring to the invocation of pre-existing models.

Model Type Backbone Learning Contribution
Planner-Only
MoManipVLA [146] K OpenVLA-7B M Leverage VLA models to predict waypoints and optimize full-body trajectories.
ManipLVM-R1 [ ] K Qwen2.5-VL-3B RL GRPO tuning for affordance and trajectory, robust performance in OOD situations.
PaLM-E [#7] 5 PaLM SFT Train a VLM capable of general VQA and robot manipulation instruction generation.
Emb-Reas [17] S Qwen2-VL-7B SFT Construct a VLM and open-sourced dataset with planning, reasoning, and reflection.

RoboPoint [147] K Vicuna-v1.5-13B SFT Finetune VLM for spatial affordance prediction in the form of keypoints.

Reinforced [ 4] S Qwen2.5-VL-7B SFT, RL Conduct GRPO on a finetuned model, bringing better generalization to unseen.
CoM [149] P Gemini 1.5 Pro API Sequential multimodal prompting to extract force-aware manipulation from demos.
RoVI[1:0] K.P  GPT-4o / LLaVA-13B SFT Visual sketch-based instruction and hierarchical pipeline for precise manipulation.

ReLEP [151] P LLaVA-1.6-7B SFT A planning framework with implicit logical inference and hallucination mitigation.
Vila [152] S GPT-4V API A VLM planner integrating perception and reasoning without affordance models.
RoboBrain [157] K.,S LLaVA SFT Provide a hierarchical VLA focus on planning, affordance, and trajectory.
Planner+Policy
HAMSTER [4+] K VILA-15-13B SFT, IM Propose an out-of-the-box way for trajectory prediction to assist the low-level policy.
HiRobot [151] 5 PaliGemma-3B, mq SFT, IM A hierarchical VLA with high explainability and capacity for complex tasks.
Agentic Robot [157] 5 GPT-40 SFT A closed-loop hierarchical pipeline where a VLM is attached to a completion judge.
DexVLA [156] 5 Qwen2-VL SFT, IM Combine a VLM with a large diffusion head up to 1B and a 3-stage training recipe.
Instruct2Act [157] P ChatGPT APl Generate programs that call APIs for mapping from instructions to actions.
RoboMatrix [1 7] S Vicuna 1.5 SFT VLA with modular scheduling layer, skill layer, and hardware layer.
PointVLA [157] S Qwen2-VL SFT Attach VLA with a point cloud encoder and injector to equip spatial perception.
Ag [49] K Qwen2 5-7B SFT, API Hierarchical affordance-aware diffusion with embody-agnostic keypoint prediction.
FSD [160] S CLIP, Vicuna SFT Propose the generation of visual aids via SrCoT for zero-shot manipulation.
RoBridge [151] 5 GPT-40 IM, RL Bridge VLM cognition with RL execution via invariant operable representation.
Robocerebra [162] S GPT-40, Qwen2.5-VL SFT A novel benchmark and hierarchical framework for long-horizontal evaluation.
DexGraspVLA [107] S Qwen-VL APL IM Combine a VLM as a high-level planner with a low-level diffusion-based policy.
RT-H [4] S PaLl-X 55B SFT, IM An action hierarchy architecture using language motion as a middle representation.
ReKep [*1] K, GPT-40 API Training-free trajectory generation by keypoint constraints for manipulation.
VoxPoser [10:1] P GPT-4 APl Propose language-guided 3D value maps with zero-shot generalization capabilities.
SkillDiffuser [11:7] 5 Transformer M A hierarchical VLA with high-level model and low-level model.
RT-Affordance [104] K PaLM-E 2 SFT, IM Use visual affordances as intermediate features for web-robot knowledge transfer.

HiBerNAC [167] 5 PalLM2 SFT Propose an asynchronous model that mimics the hierarchical structure of the brain

LLARVA [165] K Llama 2 7B SFT, IM A vision-action instruction tuning paradigm and a large instruction tuning dataset.
MALMM [1:4] GPT-4-Turbo APl Three-agent system combining planner, supervisor, and coder without post-training.
VLA-Touch [170] GFPT-40 M Integrate tactile sensing into VLA control via diffusion-based imitation learning.




OpenVLA (Single-system) stanford, 2024.09
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pL ~ Weights 3.5 Infrastructure for Training and Inference
Cod The final OpenVLA model is trained on a cluster of 64 A100 GPUs for 14 days. or a total of
o ode 21,500 A100-hours, using a batch size of 2048. During inference, OpenVLA requires 15GB of GPU

memory when loaded in bfloat16 precision (i.e., without quantization) and runs at approximately
6Hz on one NVIDIA RTX 4090 GPU (without compilation, speculative decoding, or other inference
speed-up tricks). We can further reduce the memory footprint of OpenVLA during inference via

Figure 1: We present OpenVLA, a 7B-parameter open-source vision-language-action model (VLA), trained
quantization, without compromising performance in real-world robotics tasks, as shown in Scction 5.4,

on 970k robot episodes from the Open X-Embodiment dataset [|]. OpenVLA sets a new state of the art for
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GROOT N1 (Dual—system) NVIDIA, 2025.03
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Figure 2: GROOT N1 Model Overview. Our model is a Vision-Language-Action (VLA) model that adopts a
dual-system design. We convert the image observation and language instruction into a sequence of tokens to
be processed by the Vision-Language Model (VLM) backbone. The VLM outputs, together with robot state and
action encodings, are passed to the Diffusion Transformer module to generate motor actions.
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Training Infrastructure

We train GROOT N1 on a cluster managed via NVIDIA OSMO (NVIDIA, 2025), an orchestration platform for
scaling complex robotics workloads. The training cluster is equipped with H100 NVIDIA GPUs connected via
NVIDIA Quantum-2 InfiniBand in a fat-tree topology. We facilitate fault-tolerant multi-node training and data
ingestion via a custom library built on top of the Ray distributed computing library (Moritz et al., 2018). We
use up to 1024 GPUs for a single model. GROOT-N1-2B used roughly 50,000 H100 GPU hours for pretraining.

Compute-constrained finetuning was tested in the context of a single A6000 GPU. If only tuning the adapter
layers (action and state encoders + action decoder) and DiT, a batch size up to 200 can be used. When tuning
the vision encoder, a batch size of up to 16 can be used.

2. GROOT N1 Foundation Model

GROOT N1 is a Vision-Language-Action (VLA) model for humanoid robots trained on diverse data sources.
The model contains a vision-language backbone that encodes language and image input and a DiT-based
flow-matching policy that outputs high-frequency actions. We use the NVIDIA Eagle-2 VLM (Li et al., 2025) as
the vision-language backbone. Specifically, our publicly released GROOT-N1-2B model has 2.2B parameters
in total, with 1.34B in the VLM. The inference time for sampling a chunk of 16 actions is 63.9ms on an L40
GPU using bf16. Fig. 2 provides a high-level overview of our model design. We highlight three key features of
GROOT N1:



Challenges

® Architecture

m Memory and Long-Term Planning: Existing models lack explicit memory mechanisms, making it difficult to
handle planning and execution of long—sequence and multi—step tasks, as well as processing historical
context.

m 3D and 4D Perception: There is a need to extract precise 3D and 4D (spatiotemporal) information from 2D
image inputs to support accurate manipulation.

m Model Efficiency: VLMs have high computational costs and slow inference speeds, which are insufficient for
real—-time robot control requirements.

® Data

m Reality Gap: Simulation datasets lack the visual complexity of real environments, while collecting real-
world data is expensive and limited in scale.

m Modality Imbalance: Most datasets primarily provide RGB images and text, lacking critical sensor
modalities such as depth maps, force/torque, and tactile data.

m Data Fragmentation: There is a lack of unified, large—scale, cross—scenario embodied AI datasets,

particularly gaps in high task complexity and multimodal richness.

® Benchmark

Existing benchmarks mostly focus on short—-horizon pick—and-place tasks and report simple success rates,
which are insufficient to evaluate practical challenges like long—term planning.
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Wor ld Model

A world model in the context of embodied intelligence is a learnable model that simulates changes
in environmental states internally to predict future outcomes. It serves as a bridge connecting
embodiment and intelligence, constructed through the agent's sensory-motor interactions with the
environment (e.g., touch, vision) and enabling adaptive behavior in complex scenarios.

For embodied Al systems, world models must not only generate static scene descriptors but also
support actionable predictions, ensuring physically compliant interactions by modeling the
dynamics of the external world. This integration of perception, cognition, and predictive simulation
distinguishes it from purely generative visual models, making it a core component for AGI by
unifying semantic reasoning (via large language models) and physical interaction constraints.



Wor ld Model

TABLE 1
A summary of representative world models in robotics and general-purpose domains.
Datasets Platform Modality
’ i " e B ow o 8o o= 88 o e 5§ = b 3z ‘

Paper Publication Taxonomy Characteristics % ; :;; 5 % i _% E' E’ ¥ g E E § ; 2‘ :—3. Reality

~ 4 4 g = E 8 & < £ £ 3
PlaNet [11] ICML'I®  Dec/Seq/GLV RSSM s 1 & 7
Dreamer [|11] ICLR™20 Dec/Seq/GLV RSSM g S £ 3 S
GLAMOR [ 9] ICLR'21 Dec/Seq/GLV IDM v 2 S
DreamerV2 [11] ICLR21 Dec/Seq/GLV RSSM v 2 v
TransDreamer [ 4] arXiv'22 Dec/Seq/GLV TSSM g S s 4 s L
Iso-Dream [10] NeurlP§'22  Dec/Seq/GLV IDM v 4 4 ' s
MWM [<1] CoRL'22 Dec/Seq/TFS RSSM v v v 3 v v
Inner Monologue [42] CoRL'22 Dec/Seq/TFS CoT 4 3 s v s 4
DayDreamer [+ 7] CoRL'22 Dec/Seq/GLV RSSM ts 4 s s s ' s
TWM [29] ICLR'23 Dec/Seq/TFS Transformer s 1 s S
IRIS [ 1] ICLR'23 Dec/Seq/TFS Transformer v 1 v v
WorldDreamer [45] arXiv'24 Gen/Glo/TFS Transformer v 4 s v 4
Statler [16] ICRA24 Dec/Seq/TFS LLM v 2 ¥ v v v 4
Pandora [17] arXiv'24 Gen/Seq/TFS Video Diffusion v v 2 ' v
DWL [#5] R55'24 Dec/Seq/GLV MLP v 4 v 7 v v
RoboDreamer [19] ICML"24 Dec/Glo/TFS DM v s 2 v v
Genie [50] ICML"24 GeniSeq/TFS Transformer ' v 3 v v
V-JEPA [51] TMLR'24 Gen/Glo/TFS JEPA v v [ v
PreLAR [7] ECCV'24 Dec/Seq/GLV RSSM v s 7 3 ' v
ManiGaussian [ 7] ECCV'24  Dec/Seq/DRR IDGS s 1 & ¢ 4 & S
ECOT [54] CoRL'24 Dec/Glo/TFS CoT v 3 ¥ 7 v v
VidMan [7] NeurlP$'24  Dec/Glo/TFS 1DM v v S 4 & 7 4
iVideoGPT [50] NeurlPS'24  Gen/Seq/TFS Transformer 4 v 7 v 6 o v
EnerVerse [ 1] arXiv'2s Dec/Seq/SLG  Video Diffusion VA A A R S s s
GLAM [37] AAAI'2S  Dec/Seg/GLV Mamba T 1 &
NavCoT [54] TPAMI'2ZS  Dec/Seq/TFS CoT S 4 v
DreamerV3 [ 1] Nature25 Dec/Seq/GLV RSSM s v td ] s v s
MineWorld [57] arXiv'25 Dec/Seq/TFS Transformer s 1 ' v
DreMa [61] ICLR'25 Dec/Seq/DRR ADGS s v 2 ' v ' s s s
52-SSM [o1] arXiv'25 Gen/Seq/TFS Mamba v 1 s v
RLVE-World [#2] arXiv'25 Gen/Seq/TFS RLVR v v 3 v v v
StateSpaceDiffuser [ 7] arXiv'25 Gen/Seq/TFS Mamba 4 2 v v
DeepVerse [1] arXiv'25 Gen/Seq/TFS DiT s 1 v ' s s
ORY [03] arXiv'25 Gen/Glo/SLG DiT s s 4 'l v ' s s
V-JEPA 2[14] arXiv'25 Gen/Glo/TFS JEPA v v v 18 v v v v
NWM [05] CVPR'25 Dee/Seq/TFS DiT v 6 v v
WorldVLA [67] arXiv'25 Dec/Seq/TFS Transformer v 1 ¥ v v
World4Omni [0] arXiv'25 Gen/Seq/TFS VLM v s 2 ' v s 'S s
Dyn-0 7] arXiv'25 Dec/SeqTFS Mamba v 1 v
DINO-WM [701] ICML"25 Dec/Seq/SLG Transformer v v 3 v v
EVA[71] ICML'2S  Gen/Seq/TFS RoG 4 v 4 7 4
AdaWorld [ 7] ICML'2S  Gen/Seq/TFS  Video Diffusion v A A T A
MindJourney [77] arXiv'2s  Gen/Seq/SLG VLM A T A s
OGAF [71] arXiv'25  Dec/Seq/DRR 4DGS 7/ I A v
Yume [75] arXiv'25 Gen/Seq/TFS DIT A I A v
villa-X [76] arXiv'2s Dec/Glo/TFS IDM v 4 ;S v 5 v v v v
AETHER [77] ICCV™25 Gen/Glo/SLG DIT v 6 v I v
TesserAct [74] ICCV™25 Dec/Glo/SLG IDM v 4 ' v 4 s ' v ./
MineDreamer [ 7] IRDS25 DeciSeqTFS Col v 3 v 7 v
ManiGaussian++ [*1] IROS"25 Dec/Seq/DRR 3DGS I v 2 ' v ' i v 4

! Tuxonemy: Abbreviations for the taxonomy categorics defined in §3.
2 Characteristies: Representative backbone or core technical approach

3 Total: Number of data platforms used. Underlined entries denote newly proposed or aggregated datasets.

4 Reality: The check mark (v} indicates validation on a physical robot

A summary of representative world models for the autonomous driving domain.

TABLE 2

Datasets Platform

Input Modality

= . =3 @ = -

Paper Publication Taxonomy' Characteristics® é § E ; 9 é % "E 8 é = % é %ﬁ é jé’
<4 i §8 &5 &2 F =8 ¢ % F G
O J= o © g S 0o ©

MILE [#1] NeurlPS'22  Dec/Seq/GLV RSSM v 1 s v

Copilot4D [#2] ICLR 24 Gen/Seq/SLG Video Diffusion v ' 3 v '

SEM2 [83] TITS 24 Dec/Seq/GLV RSSM v 1 4 4 v v

MagicDrive3D [#4] arXiv'24 Gen/Glo/DRR 3DGS ' 1 v v v v e v

OccSora [45] arXiv'24 Gen/Glo/SLG Diffusion v v 2 v v

Delphi [#0] arXiv'24 Gen/Seq/SLG Video Diffusion v 1 v v v v

DriveWorld [+7] CVPR’'24 Dec/Seq/SLG RSSM v v 2 v v v v

Drive-WM [25] CVPR24 Dec/Glo/SLG Video Diffusion v 1 s v v s ' v

ViDAR [2Y] CVPR’24 Gen/Seq/SLG Transformer v 1 v v '

GenAD [90] CVPR'24 Gen/Seq/TFS Video Diffusion v v 4 v v

OccLLaMA [14] arXiv'24 Dec/Seq/SLG Transformer v v v 3 v v Vv v

DriveDreamer V1] ECCV'24 Dec/Seq/SLG GRU v 1 v v v v v

GenAD [92] ECCV'24 Dec/Seq/SLG GRU v 1 s

OccWorld [27] ECCV'24 Dec/Seq/SLG Transformer v v 2 v v v v

DOME [94] arXiv'24 Gen/Seq/SLG DiT v v 2 v v

TOKEN [99] CoRL'24 Dec/Glo/TFS Transformer v v 2 v v v v

Vista [V0] NeurIPS'24 Gen/Seq/SLG Video Diffusion v v v v 4 v v v

DriveDreamer-2 [V7] AAAI'2S Gen/Glo/SLG Video Diffusion v 1 v v v v v

DTT [V¥] arXiv'25 Dec/Seq/DRR Transformer v v 2 v v v v

DynamicCity [99] ICLR25 Gen/Glo/SLG DIT v v v s 4 v v v v

LidarDM [100] ICRA’25 Gen/Seq/SLG Diffusion v v 3 v v

FutureSightDrive [101] arXiv'25 Dec/Seq/TFS CoT(VLM) v v 3 v s v

GEM [102] CVPR’25 Gen/Seq/SLG Video Diffusion v v ¥ v v/ v

GaussianWorld [107] CVPR’25 Gen/Seq/DRR Transformer v v 2 v v

MaskGWM [104] CVPR’25 Gen/Glo/TFS DIT v v v 3 v v v

DriveDreamer4D [105] CVPR'25 Gen/Glo/DRR 4DGS v v 3 ' v v 4

ReconDreamer [106] CVPR’25 Gen/Glo/DRR 3DGS v v v 3 v v v v v

WoTE [11)7] ICCV'25 Dec/Seq/SLG Transformer v v 2 v v v

HERMES [10¥] ICCV'25 Gen/Glo/SLG LLM v v 4 v v v

InfiniCube 7] ICCV'25 Gen/Seq/DRR 3DGS v 1 v v v 4

DriVerse [ 109] ACMMM’25  Gen/Seq/TFS DiT 4 v 2 v v 4

] Taxonomy: Abbreviations for the taxonomy categories defined in §3.
2 Characteristics: Representative backbone or core technical approach.

3 Total: Number of data platforms used. Underlined entries denote newly proposed or aggregated datasets.

Yue Ma, et al. Controllable Video Generation: A Survey. arXiv:2507.16869v1
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Cosmos Predict

Cosmos is a world model platform featuring a series of open—source, open—weight video world
models with parameters ranging from 4B to 14B. The purpose of these models is clear: to
generate massive amounts of photorealistic, physics—based synthetic data for AI systems
operating in the physical world—such as robots and autonomous vehicles—thereby addressing the

severe data shortas Model Family

Model name Description Try it out
Cosmos-1.0-Diffusion-7B- I d . inf
ext to visual world generation nference
Text2World ViRdR g e
Cosmos-1.0-Diffusion-14B- Text to visual d i Inf
ext to visual world generation e
Text2World : 2 I .
Cosmos-1.0-Diffusion-7B- Video + Text based future visual world
; . Inference
Video2World generation R
Cosmos-1.0-Diffusion-14B- Video + Text based future visual world
3 . Inference
Video2World generation -
Cosmos-1.0-Autoregressive-4B8 Future visual world generation Inference
Cosmos-1.0-Autoregressive-12B Future visual world generation Inference
Cosmos-1.0-Autoregressive-58- Video + Text based future visual world
3 ; Inference
Video2World generation
Cosmos-1.0-Autoregressive-13B- Video + Text based future visual world
Inference

Video2World

Cosmos-1.0-Guardrail

generation

Guardrail contains pre-Guard and post-

Guard for safe use

Embedded in model
inference scripts



Cosmos Predict

A pre—training and post—training paradigm is proposed, dividing WEM into pre—training WFM and
post—training WEM. To build the pre—training WFM, they leverage large—scale video training

datasets to expose the model to diverse visual experiences, transforming it into a generalist
model. For the post—training WFM, they fine—tune the pre—trained WFM using datasets collected

from specific phy51ca1 Al environments, thereby creating specialized WFMs tailored for targeted
specialized p

Pre-tralmng lefusmn WFM




Cosmos Predict

Cosmos
’ World Foundation
i Pre-trained Mct:el I
Tokenizers World Foundation o Guardrail
Curator Post-Training
Models
Samples

Figure 4: Cosmos World Foundation Model Platform consists of several major components: video curator, video
tokenizer, pre-trained world foundation model, world foundation model post-training samples, and guardrail.

Video Curator: Extracted approximately 100 million video clips from a 20 million—hours
video collection, with clip durations ranging from 2 to 60 seconds. For each clip, VLM
generates video descriptions every 256 frames.

Video Tokenization: Developed a series of video tokenizers with varying compression
ratios. The token computation for the current frame does not rely on future observations.
WFM Pre—training: Utilized diffusion models and autoregressive models for training.
World Model Post—training: Applied the pre—trained WEM to multiple downstream physical
AT applications.

Guardrails: To ensure the safe deployment of the developed world foundation models, a
guardrail system was implemented to block harmful inputs and outputs.
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Figure 11: Overall architecture of Cosmos-1.0-Diffusion World Foundation Model. The model processes
an input video through the encoder of the Cosmos-1.0-Tokenizer-CV8x8x8 to obtain latent representations,
which are subsequently perturbed with Gaussian noise. These representations are then transformed using a
3D patchification process. In the latent space, the architecture applies repeated blocks of self-attention, cross-
attention (integrating input text), and feed-forward MLP layers, modulated by adaptive layer normalization
(scale, shift, gate) for a given time step t. The decoder of Cosmos-1.0-Tokenizer-CV8x8x8 reconstructs the final
video output from the refined latent representation.



Cosmos Predict

Table 11: Configuration details of Cosmos-1.0-Diffusion models.

Configuration 7B-Text2World 14B-Text2World 7B-Video2World 14B-Video2World
Number of Layers 28 36 28 36

Model Dimension 4,096 5,120 4,096 5,120

FFN Hidden Dimension 16,384 20,480 16,384 20,480
AdaLN-LoRA Dimension 256 256 256 256
Number of Attention Heads 32 40 32 40
Number of Key / Value Heads 32 40 32 40

MLP Activation GELU

Positional Embedding Hybrid positional embedding

Conditional Information Text; FPS Text; FPS Text; FPS; Frames Text; FPS; Frames
Base Learning Rate i 2—e 7 i
Weight decay 0.1 0.2 0.1 0.2
Learning Rate Warmup Linear scheduler with 2,500 iterations

AdamW momentum and ¢ Bi.82 =0.9,0.99; ¢ = 10710




Cosmos Predict

Table 12: Stages of progressive training and their specifications.

Stage Resolution Number of Frames Context Length FSDP Size CP Size
Low-resolution Pre-training 512p (640x512) 57 10,240 ®
High-resolution Pre-training | 720p (1280x704) 121 56,320 °
High-quality Fine-tuning 720p (1280x704) 121 56,320

“ 10,240 (the context length) is computed as: 640 (width) +8 (tokenize) +2 (patchify) x512 (height) +8 (tokenize)

+2 (patchify) x[(57 — 1) + 8 + 1] (tokenize frames).

P 56,320 (the context length) is computed as: 1280 (width) =8 (tokenize) =2 (patchify) x704 (height) =& (tokenize)

+2 (patchify) x[(121 — 1) = 8 + 1] (tokenize frames).



Cosmos Predict

GPU Memory Requirements

The four primary components consuming GPU memory are:

 Model Parameters: 10 bytes per parameter. Mixed-precision training stores model parameters in
FP32 and BF16 formats, while Exponential Moving Average (EMA) weights are stored in FP32.

« Gradients: 2 bytes per parameter. Gradients are stored in BF16.

« Optimizer States: 8 bytes per parameter. AdamW (Loshchilov & Hutter, 2019) is used as the
optimizer, with its states (first- and second-order moments) stored in FP32.

 Activations: (2 X number_of_layers X 15 X seq_len X batch_size X d_model) bytes. Activations are stored in BF16.
Selective activation checkpointing (Chen, 2016; Korthikanti, 2023) is implemented to optimize
memory usage by recomputing activations for memory-intensive layers (e.g., normalization
functions).

« Example: A 14B model (e.g., Cosmos-1.0-Diffusion-14B-Text2World) requires approximately 280 GB
for model parameters, gradients, and optimizer states, plus 310 GB for activations during high-
resolution pretraining. Given the 80GB HBM3 memory limit of NVIDIA H100 GPUs, Fully Sharded Data
Parallelism (FSDP) and Context Parallelism (CP) are employed to distribute memory demands across

multiple GPUs.
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World Model Challenge

® Long—term Temporal Consistency: Achieving long—term temporal consistency and mitigating
error accumulation in sequential prediction is a core modeling challenge.

® Lack of Physically Consistent Evaluation Metrics: There is an urgent need to develop
metrics for evaluating the physical consistency and causality of models, rather than
focusing solely on pixel fidelity.

® Efficiency-Performance Trade—off: A balance needs to be struck between model performance
and computational efficiency required for real-time control on physical devices.

® Data Scarcity and Unification: There is a lack of unified, large-scale datasets for
embodied Al

® Model Interpretability and Robustness: Existing model-based approaches, such as the
Dreamer series, have limitations in interpretability, robustness, and reliability when

operating in real-world environments.
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