

Building a Supercomputing Team

A Case Study of Team Weiming

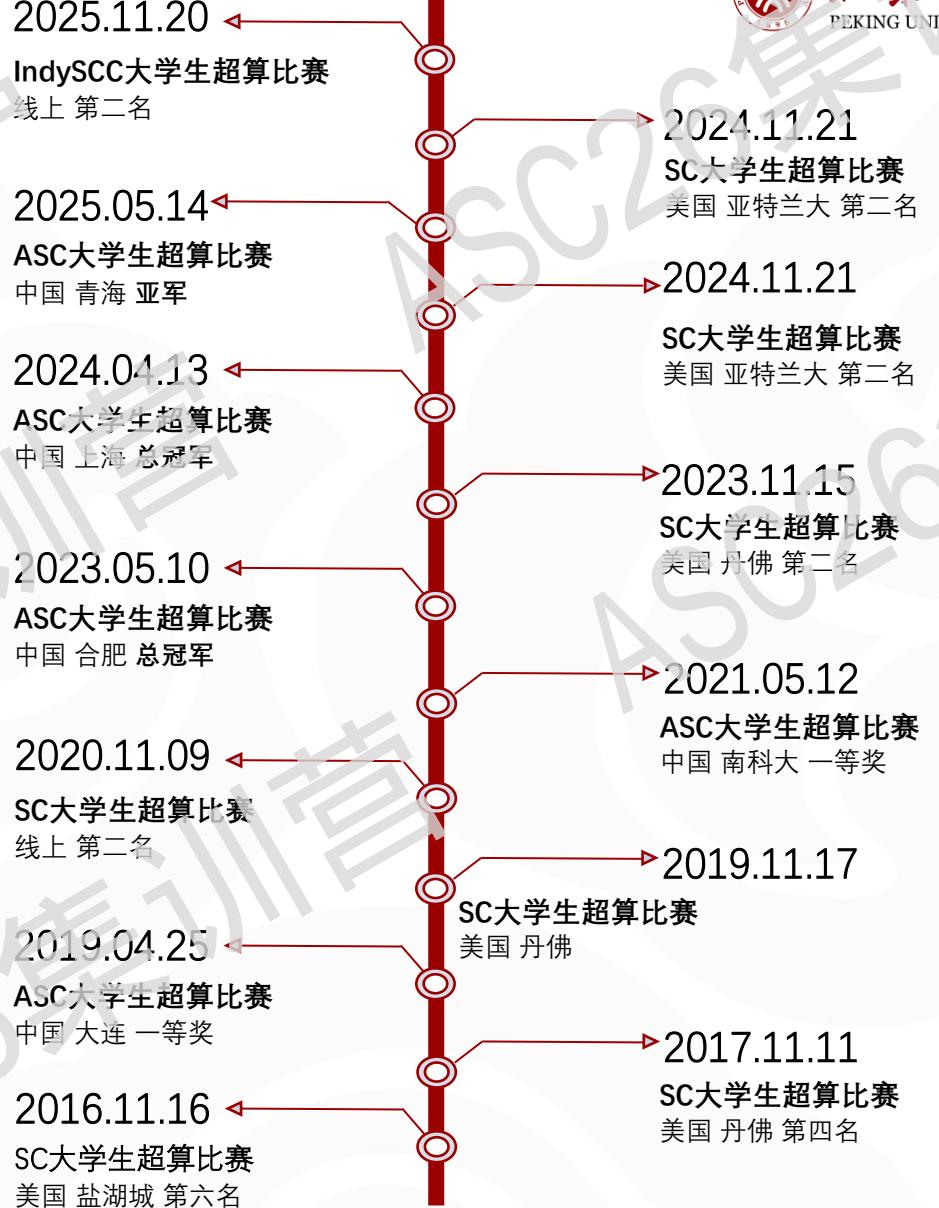
Yuanhang Sun, Peking University Super Computing Team

About Me

- Education: Peking University, B.S. ('21) & M.S. Candidate ('25)
- Research Interest: MLSys (Machine Learning Systems)
- Member: PKU Supercomputing Team
- ASC Experience:
 - ASC23 Observer, ASC24 Team Captain, ASC25 Student Coach

Agenda

- Introduction
- Competition Preparation
- Team Organization
- Team Building in the AI Era


Team Intro

About the Team

- Founded: 2015
- Members: PKU undergraduates passionate about HPC
- Composition
 - Diverse & Balanced: Distribution across grades, gender, and majors
 - Multidisciplinary: Includes Foreign Languages, Engineering, CS, Electronics, etc.
 - Structure: Strong legacy with a mix of veterans and new members
- Mission
 - Cultivate Awareness: Promote HPC mindset across campus
 - Empower Usage: Enable students from diverse backgrounds to leverage HPC tools

Track Record

Competition Preparation

Team Structure & Roles

- **Captain** x 1
 - **Team Coordination**: Oversee overall operations.
 - **Management**: Schedule meetings & maintain documentation.
 - **Competition Strategy**: Allocate cluster time & make critical decisions.
 - **Logistics & Support**: Handle logistics and ad-hoc tasks.

- **SysAdmin** x 1
 - Often doubles as an Application Lead
 - **System Design**: Hardware architecture & assembly.
 - **System Tuning**: Software environment & toolchain optimization.
 - **Power Management**: Monitor and control power consumption.
- **For Applications**
 - **Workflow**: 1 Lead + 1-2 Members per application.
 - **Benchmarking**: Conduct baseline tests.
 - **Performance Tuning**: Analyze bottlenecks & optimize code.

Optimization Workflow

- Step 0: Toolchain Construction
- Step 1: Baseline & Comprehension
 - Run baseline & Understand application logic, I/O formats, and module functions
- Step 2: Bottleneck Analysis
 - Identify performance hotspots using profilers (e.g., VTune, Nsight).
- Step 3: Optimization Strategy
 - Software: Replace libraries, rewrite compute-intensive kernels
 - Hardware: Tune hardware configuration for optimal fit

> *Note: Steps 2 and 3 form an iterative cycle.*

Besides Optimization

- Where to find cluster
 - Taobao: Monthly bare-metal rental with root access.
 - HPC Cluster: Pay-as-you-go (Core-hours / GPU-hours)
 - **Recommendation:** Maintain 1-2 local servers to foster team identity and ownership
- Why Toolchains are important
 - ASC24 Finals: Pre-installed mlnx_ofed drivers failed to support ConnectX-6, many teams failed to run multi-node tasks.
- **Food Matters:**
 - Pizza at meetings significantly boosts attendance and engagement

Team Organization

Sustainable Growth: 一顿饱和顿顿饱

- Old Guides New
 - **Novices:** Participate in actual competitions
 - **Veterans:** Provide experience, strategy, and guidance
 - Member Lifecycle
 - Freshman (Spring): Join & Observe ASC
 - Sophomore (Fall): Compete in SCC
 - Sophomore (Spring): Compete in ASC and then **retire!**
 - Junior: One member remains as Captain.
- Open to all majors and skill levels
 - Passion for HPC is the only prerequisite.
 - Interdisciplinary background.
- Quality over Quantity
 - Better to have fewer, high-quality members

The Competition-Driven Model

- Core Competitions: ASC、SCC and HPCGame
- **Recruitment**
 - Timing: Annual intake in February.
 - Source: Select top Freshmen performers from HPCGame
- **Learning by Doing**
 - Assign actual ASC problems to new members immediately
 - Emphasize self-initiative, hands-on debugging, and peer discussion
- **Advanced Development:** create challenges for HPCGame
 - Tackle unknown optimization tasks
 - Convert solutions into new contest problems

Advanced Training & Workshops

• Topic Selection

- Aligned with academic/industry hotspots (e.g., LLM).
- Tailored to team members' interests.

• Recent Highlight (Winter 2026)

- "LLMs from Scratch."
- Co-hosted by the Supercomputing Team & Linux Club.

• Expert Insights

- Professors & Alumni invited to weekly meetings.
- Sharing frontier knowledge and industry practices.

学习组 | 从零训练大模型！

日期: 2024-01-17 18:47 地点: 北京

这个寒假，从零训练你自己的大模型

每天都在用大模型，有没有好奇过：

- 那些神奇的回答究竟是怎么生成的？
- 训练数据从哪里来，又如何清洗？
- 几十亿参数的模型，怎么塞进显卡跑起来？
- Scaling Law 到底在 scale 什么？

这个寒假，北京大学学生 Linux 俱乐部邀请你一起，从零开始训练一个属于自己的大模型。

项目介绍

今年寒假，Linux 俱乐部计划开展 [LLM From Scratch](#) 计划，以斯坦福大学广受好评的 [CS336: Language Modeling from Scratch](#) 为蓝本，带你亲手实现大模型训练的全程。

不是调 API，不是微调开源模型，而是：

[从 Tokenizer 写起，从第一个 Attention 算子写起，从第一条梯度开始训练。](#)

你将学到什么

Phase 1: 跟随 CS336，完成五大核心作业

作业1 | Building a Transformer LM

- 手写 BPE Tokenizer
- 从零实现 Transformer 语言模型
- 实现 Cross-Entropy Loss 和 AdamW 优化器
- 在 TinyStories 和 OpenWebText 上训练并评估

作业2 | Systems and Parallelism

- Benchmarking 与 Profiling⁹
- 用 Triton 手写 Flash Attention 2 内核
- 实现分布式数据并行训练 (DDP)
- 优化器状态分片

作业3 | Scaling Laws

Proposal : HPCWiki

- The Pain Point
 - Extensive repetition in basic documentation across different university teams.
 - Non-Core Focus: Time wasted on generic tutorials rather than unique competitive advantages.
- The Vision
 - Establish a unified, shared HPC knowledge base.
 - Eliminate "reinventing the wheel" and standardize basic training.
- Current Status
 - Website framework deployed at hpcwiki.io.
 - Currently stalled due to manpower shortage.

The screenshot shows the HPC Wiki homepage. The top navigation bar includes links for Start, HPC简介, HPC比赛, 超算平台, 硬件, 并行编程, GPU编程, Benchmark, 科学计算与机器学习系统, and Misc. The main content area features a section about HPC competitions, mentioning SCC, ISC, and ASC. Below this is a section about the challenges of building supercomputer teams. The right side of the page displays a color palette with sections for Material color palette (颜色主题), Color Scheme (配色方案), Primary colors (主色), and Accent colors (辅助色). The color palette includes a 'Default' color scheme and a 'Slate' color scheme.

Primary colors 主色

Proposal: Shared Recruitment Platform

• Current Challenges

- **Timing Gap:** Recruitment (Oct) for ASC Season, but Lack of competitive events
- **Redundancy:** Duplicated effort in building evaluation platforms across universities
- **Cost:** High expense for recruitment contest compute resources.

• Proposed Solutions

- **Infrastructure:** Reuse HPCGame infrastructure for judging and hosting.
- **Joint League:** Inter-university format to share the workload of problem design
- **Sponsorship Model:**
 - Platform centralizes sponsor negotiations
 - Sponsors cover Core-hours for **ALL** competitions
 - Platform provides compute to contests.

• Pilot Success (Sept-Oct 2025)

- Lzu-Nju-QuLu 3-University Joint League.

The screenshot shows a competition page for the 'Lzu-Nju-QuLu 3-University Joint League' (lzu-nju-qlu-2025). The page is in Chinese and includes the following information:

- 比赛状态:** 即将开始 - 正在进行 - 已结束 (Upcoming - In Progress - Ended)
- 比赛时间:** 2025-10-08 09:59:00 - 2025-11-01 23:59:00
- 赛事介绍:** 「Lzu-Nju-QuLu 三校联赛」是以高性能计算与并行计算为主题、受众人群主要为新生的入门竞赛，旨在推动高性能计算在高校中的普及与发展，提升学生的高性能计算理论与实践能力。比赛面向兰州大学、南京大学和齐鲁工业大学（山东省科学院）的在校学生，欢迎零基础入门的新生，题目难度呈梯度分布，力求让从未接触过高性能计算相关知识的新生和具备一定专业基础的同学都能享受竞赛过程，并在学习中切实收获成长。比赛为个人赛形式，我们针对高性能计算的多个方向提供了相应的学习资料。通过学习和竞赛，同学们能够对高性能与并行计算形成基本认识，并掌握一定的实际操作技能。成绩优异者有机会优先加入各校超算队。题目内容涵盖高性能计算的多个方面，包括适合萌新愉快探索的入门试题，以及具有一定挑战性的挑战题目，主要分为以下模块：
- 模块:**
 - 探索 HPC 优化方法论：通过一个简单应用开始，逐步引导选手理解并掌握 HPC 优化的基本手段与思路，如性能剖析、编译器优化、并行化、向量化等；
 - 应用综合优化：综合运用多种优化手段，加速现实世界中的真实应用，理解不同优化方法的适用场景与效果；
 - 挑战 AI 与新兴计算场景：探索在 AI 与新兴计算领域中，高性能计算技术的应用与挑战，理解其独特的计算需求与优化策略。
- 报名阶段:**
 - 时间：2025年9月8日 00:00 - 2025年10月8日 09:00
 - 内容：开放比赛报名通道，参赛者需在规定时间内完成注册。
- 正赛阶段:**
 - 时间：2025年10月8日 09:00 - 2025年10月20日 23:59
 - 内容：比赛正式进行，参赛者可在此期间提交题目答案。
- 备注:** 所有时间均以北京时间为准 (UTC+8)。请参赛者合理安排时间，注意截止日期。

Paradigm Shift: HPC Teams in the AI Era

HPC Teams in the AI Era

1. Opportunities: High ROI

- **Market Demand:** Exploding need for MLSys talent in industry.
- **Career Boost:** Higher expected returns for students participating in HPC.

2. Technical Evolution: "Black-box" to "White-box"

- **Code Accessibility:** LLMs help decode massive legacy codebases (e.g., 200k+ lines of Fortran).
- **Barrier Removal:** Previously "untouchable" code is now open for refactoring.
- **Competitive Edge:** More dimensions for optimization and rivalry.

3. The Crisis: Talent & Skills

- **Recruitment:** Students prefer pure AI/Algo over Systems Engineering.
- **Skill Erosion:** Over-reliance on LLMs → Decline in fundamental coding abilities.
- **Training Burden:** Harder to cultivate deep understanding in novices.

4. Strategic Response

- **The Pivot:** Transitioning toward AI-integrated workflows is necessary.
- **New Curriculum:** Shift focus to **AI Literacy**—teaching the *correct* and rigorous use of AI tools.

Thanks!

**Best Wishes:
Wishing ASC continued
success and growth!**