c' hERFER T EYNEES PO
.: Computer Network Information Center,

Chinese Academy of Sciences

Fortran Programmi

L

i ' | I.. r

Introduction

CONTENTS 4) Operator

° Example & Conclusion

1 ch R B AL (S B iy
°® ' :
1 I n t rOd u Ct I O n C' Computer Network Information Center
Chinese Academy of Sciences

- LN - o - O -

Fortran (Formula Translation)

Pioneers of Fortran

In the early 1950s, computer programming was the
exclusive domain of a small group of specialists who wrote
code in machine language, a complex and cumbersome set
of instructions. Programming was for experts only —
outsiders need not apply. Then came Fortran.

From its creation in 1954 and its commercial release in 1957
as the progenitor of software, Fortran (short for formula
translation) became the first computer language standard.
It helped open the door to modern computing and ranks as
one of the most influential software products in history.
Fortran liberated computers from the exclusive realm of
programmers and opened them to nearly everybody else.
And it’s still in use decades after its release 11,

Lois Haibt Robert Nelson Roy Nutt

Sheldon Best Richard Goldberg

[17 https://www.ibm.com/history/fortran#Born+of+necessity

https://www.ibm.com/history/fortran#Born+of+necessity

M ch BN BRI E RS 2
1 ° I n t rOd u Ct I O n c:c Computgt Netwﬁk Information Cerlw-;er.
Chinese Academy of Sciences

- LN - o - O -

Fortran (Formula Translation)

TIOBE index(1!

John Backus, the father of Fortran, released the first * 1 & e
Fortran compiler at IBM, creating the world’s first high-level . -
programming language—predating the arrival of Cin 1972. ‘ : v g °
Fortran was specifically designed for computation-intensive ;
applications in science and engineering, and its strength lies : .
in its ability to translate complex scientific formulas into @ (=
computer code. The language was originally created to make ; 2 A
scientific computing more efficient and straightforward. - S -
The feature of Fortran language : ° ° \ ®
 Easy to learn, with rigorous grammar. S

* It can directly perform operations on matrices and o - -
complex numbers. Ao ¢ o o

[1] https://www.tiobe.com/tiobe-index/
[2] https://amturing.acm.org/award winners/backus 0703524.cfm

https://www.tiobe.com/tiobe-index/
https://amturing.acm.org/award_winners/backus_0703524.cfm

Chinese Academy of Sciences

- ch E R B AR S S e
1 ° I n t rOd u Ct I O n c:c Computg; Ne:wfpk Information Cerlm-;er,

Fortran Development Timeline

é -
i ~— 1
1951 1954 1957 1958 1962 1962 1966 1978 1980 1991 1997 2004 2010

0 0 0 0 o - - v - . ' ' ' 0 | T
H H H i ' 1 1 1 ' i i i '
' ' ' ' ' ' ' ' ' ' | '
' H ' 1 ' 1 i 1 1 H | 1
H H H H ' H i H H H : H
H H ' H ' H H H H H | H
1 1 ' 1 ' 1 |

Y

FORTRAN IV ANSI begins FORTRAN 66 FORTRAN 77 150 standard 150
3 . 1539-1980

.

Fortran 2003 Fortran 2008
released standardization = 8
{compatibility issues 2
arise) First ANSI standard Structured 1 - Major revision Current standard
. programming d
H
|
\J A \J t ¥ ¥ ¥ A\ ¥ ¥ ¥ ¥ ¥

Original versions, Fortran I, Il and Il are considered obsolete now.

Oldest version still in use is Fortran 1V, and Fortran 66.

Most commonly used versions today are : Fortran 77, Fortran 90, and Fortran 95.
Fortran 77 added strings as a distinct type.

Fortran 90 added various sorts of threading, and direct array processing.

Fortran 2003,Fortran 2008, Fortran 2023

[1] extension://nhppiemcomgngbgdeffdgkhnkjlgpcdi/data/pdf.js/web/viewer.html?file=https://math.ecnu.edu.cn/~jypan/Teaching/Fortran/Fortran95pjy.pdf
[2] https://gcc.gnu.org/fortran/

[3] https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/fortran-compiler.html

[4] https://www.nvidia.cn/about-nvidia/press-releases/2014/nvidia-pgi-ibm-power-systems-11202014/

[5] https://www.tutorialspoint.com/fortran/fortran_overview.htm

[6] https://www.intel.cn/content/www/cn/zh/developer/articles/release-notes/fortran-compiler/2023.html

https://gcc.gnu.org/fortran/
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/fortran-compiler.html
https://www.nvidia.cn/about-nvidia/press-releases/2014/nvidia-pgi-ibm-power-systems-11202014/
https://www.tutorialspoint.com/fortran/fortran_overview.htm
https://www.intel.cn/content/www/cn/zh/developer/articles/release-notes/fortran-compiler/2023.html

- ch E R B AR S S e
1 ° I n t rOd u Ct I O n c:c Computg; Ne-lt'wf:k Information Cerlm-;er,

Chinese Academy of Sciences

Why Fortran?

Application

- -
Numerical analysis and scientific computation e
Structured programming R ot

o Kiietie snevgy s o Kuroshio KE [m? 7]

Array programming

Modular programming

Generic programming

High performance computing on supercomputers

Object oriented programming

Concurrent programming

Reasonable degree of portability between computer systems

01 23 45 0001 000 (1R} 118 20 22 24 26 -1 -0.5 0 05 1

[1] https://www.tutorialspoint.com/fortran/fortran_overview.htm
[2] Xie, J., Yu, J., Zhou, Y., Liu, H., Wei, J., Han, X., Xu, K., Yu, M., Yu, Z., Lin, P., Jiang, J., Zheng, W., Zhang, T., Wang, R., Jing, Z., Wu, L., A 1-km resolution global ocean simulation
promises to unveil oceanic multi-scale dynamics and climate impacts, The Innovation (2025), doi: https://doi.org/10.1016/j.xinn.2025.100843

https://www.tutorialspoint.com/fortran/fortran_overview.htm

hERFRE T EHLNEE S
2 °® Exa m p I e c:c Computzt Netv-;oﬁrk Information Cer:-;er.

Chinese Academy of Sciences

» Case One

Tells the compiler that the main program unit
program hello starts here and is named "hello"; it plays the same role as
int main() in C.

The Program Name

t * "Hello, Fortran World!"
Switches off Fortran’s default "implicit

end program hello typing" rule; every variable must be explicitly declared, or
the code will not compile.

Compilation: gfortran hello.f90 -o hello it \:_J&Command displays datalon the screen.

Run: ./hello
® Marks the end of the main program and pairs
with the opening program hello.

Hello, Fortran World!

[1] https://fortran-lang.org/zh CN/learn/quickstart/derived types/
[2] https://www.w3ccoo.com/fortran/fortran_basic_input_output.html

https://fortran-lang.org/zh_CN/learn/quickstart/derived_types/
https://www.w3ccoo.com/fortran/fortran_basic_input_output.html

th ERFRITEHREE R P00

2 °® Exa m p I e C' Computer Network Information Center,
Chinese Academy of Sciences

» Case Two

program calculate

real :: a, b, sum, product

a=5.0
b=3.0 8.00000000
sum=a+b 15.0000000

product=a*b

print *,'a+b =", sum

print *,'a * b =", product
end program calculate

th ERE R RN E R0
2 ° Exa m p I e c:c Comput.::r- I\Ie:w?k Information Cerl:ter.

Chinese Academy of Sciences

» Case Three

program character
implicit none
character(len=4) :: s1, s2
sl ="Fort"
s2 = "fort"
print *,'s1 s=sP ', s1 ==s2 | False
print *, 'sl /=552 ''s1 /= §2 ! @e

i | AT > "1" represents the comment code

y o Use the relational operator "/=" between the operands,
"==" means "equal". e.g. a /=b means "a is not equal to b".

/"' LJ.;‘

2. Example

th ERE R RN E R0
Computer Network Information Center,
Chinese Academy of Sciences

NS

Program header: program name

Declaration section: variables, arrays,
parameter declarations

» Detail
‘program calculate ’
real :: a, b, sum, product ------------------ooooeeee- oo
a=5.0
b=3.0
sum=a+b ¢
product=a*b
print *,'a+b=", sum
print *,'a* b =", product .
end proaran CalouIate D ,

Execution section: computation, control,
input/output

Program end: end program

- th ERE R RN E R0
3 ° Va rl a b I e C'I l Computer Network Information Center,

Chinese Academy of Sciences

» Basic Concepts & Naming Rules

Definition:

A variable is the name of a storage area that a program can manipulate, usually declared with its
type and name before use.

Naming Rules:

= Maximum length: 31 characters (Fortran 90/95,) . 63 characters (Fortran 2003)
= May contain only alphanumeric characters (A~Z, a~z, 0~9) and the underscore (_)

= First character must be a letter

« Letters are case-insensitive, except when used as strings

3. Variable

Basic Data type

th E R EALM S E 2Rl
I ‘ Computer Network Information Center,

Chinese Academy of Sciences

» Data Types

The basic data types mainly include: INTEGER, REAL, COMPLEX, CHARACTER, and LOGICAL.

Data Type Kind Selector Example & Byte Size

Integer

Real

Character

Logical

Complex

INTEGER
INTEGER(K)

REAL
REAL(K)

DOUBLE PRECISION

CHARACTER
LOGICAL
LOGICAL(K)
COMPLEX
COMPLEX(K)
DOUBLE COMPLEX

k={1,2,4,8}

NO
k={4,8, 16}
NO

NO

NO
k={1,2,4,8}

NO
k={4,8, 16}

NO

INTEGER :: m
INTEGER(2) :: n

REAL:: m
REAL(8) ::n

DOUBLE PRECISION ::x

CHARACTER :: str
LOGICAL :: flag
LOGICAL(1) :: flag
COMPLEX :: m
COMPLEX(8) :: n

double complex ::

X

4 bytes
Short integer

4 bytes
8 bytes
8 bytes

1 byte

4 bytes
1 byte

8 bytes
16bytes
16 bytes

3. Variable

P ERF R REA NS E S O

C' Computer Network Information Center,
Chinese Academy of Sciences

» Variable Declaration & Initialization

Declaration Syntax: data type [[, attribute]...] :: variable_list

Examplel:

integer :: counter

real :: velocity x
character(len=10) :: student_name
counter=1

velocity=1.0

student_name = "ZhangSan"

Example3:

real, parameter :: Pl = 3.141592653589793d0
real, parameter :: G = 9.81

integer, parameter :: MAX_ITER = 1000

Example2:

integer :: =0, j=1, k=2

real :x=0.0,y=1.0

complex :: z = (0.0, 0.0)

logical :: debug = .false.
character(len=20) :: msg = "Initial value"

Values unchanged during program execution

— Improve code readability Advantage

Avoid magic numbers
Improve maintenance and modification

3. Variable

th E R EALM S E 2Rl
I ‘ Computer Network Information Center,

Chinese Academy of Sciences

> Array Concept

Definition:

An array is a collection of elements of the same type stored in sequence with contiguous memory

addresses.

array: A7) [I U O O
B | B2 | B3} | B4 | B(LS) | B(LS) | B(L7)

B(2,1) B (2,2) B(2,3) B(2,4) B(2,5) B(2,6) B(2,7)
B(3,1) B(3,2) B(3,3) B(3,4) B(3,5) B(3,6) B(3,7)

Array: B(3,7)

Direction of
data contiguity

Note: In Fortran, the elements are stored column-contiguous, i.e., the leftmost subscript varies first in

memory.

- th ERE R RN E R0
3 ° Va rl a b I e c:c Comput.::r- I\Ie:w?k Information Cerl:ter.

Chinese Academy of Sciences

» Array Variables Declaration

Static array:

= Size is fixed at compile time and cannot be changed while the program runs
= Declaration: dimensions are written as constants or parameters

Example:

real, dimension(10) :: vector Fast access
integer, dimension(5,5) :: matrix

integer, parameter :: Nn=6

real ::b(n,n) I parameter constant is also allowed

Dynamic array:

= Size is determined at run time and can be allocated, released, or resized
Example:
integer, allocatable :: c(:,:) Save memory & Flexible size
allocate(c(1000,1000)) ! allocate at run time
deallocate(c) I manual release

- th ERE R RN E R0
3 ° Va rl a b I e c:c Compuljr- Netwﬁk Information Cenl-{er.

Chinese Academy of Sciences

» Array Variables Declaration

Defeinition:

= A pointer is a type of data object that not only stores memory addresses, but also contains
more information about a specific object, such as type, level and range.

= A pointer is associated with a target through allocation or pointer assignment.

Example:
program pointerExample)

implicit none / ’
integer, pointer :: p1 —] 1
e | Memory |
pl=1

Print *, p1 Allocate 4 bytes
pl=pl+4

Print *, p1
end program pointerExample

- th ERE R RN E R0
3 ° Va rl a b I e c:c Compulj Ne:wfk Information Cenl-{er.

Chinese Academy of Sciences

» Array Variables Declaration

Target And association:
= The target is another normal variable, leaving space for it. The target variable must use the
target attribute.
= Use the association operator (=>) to associate pointer variables with target variables.

Example:
program pointerExample
implicit none

integer, pointer :: pl Backtrace for this error:
integer, target :: t1 0x2b1ff2c09bda

e % N Ox2b1ff2c08dc3
Print *, p1 [0x2b1ff375527f
Print *, t1 0x4007c3

4 Ox4008bf

pl=pl+4 Ox2b1ff37413d4

i * Ox400638
Pr!nt *' pl OxTfffffIfffffffff
Print %, t1 Segmentation fault

end program pointerExample

- th ERE R RN E R0
3 ° Va rl a b I e c:c Compuljr- Netwﬁk Information Cerl:ter.

Chinese Academy of Sciences

» Array Variables Declaration

Target And association:
= The target is another normal variable, leaving space for it. The target variable must use the
target attribute.
= Use the association operator (=>) to associate pointer variables with target variables.

Example:
program pointerExample 2

implicit none /

integer, pointer :: pl |

integer, target :: t1 — Memory
pl=>t1 ’

p=1 . Allocate 4 bytes
Print *, p1; Print *, t1

pl=pl+4

Print *, p1; Print *, t1
end program pointerExample

- th ERE R RN E R0
3 ° Va rl a b I e C'I l Computer Network Information Center,

Chinese Academy of Sciences

» Derived Type (Struct)

Definition:

The derived type is a special form of data type that can encapsulate other intrinsic types as well as
other derived types. It can be regarded as equivalent to the struct in C and C++ programming

languages.
type(person) :: student
Example: A student%name = "ZhangSan"
1) GlEmE! student%age = 20
type :: person student%height = 1.75
character(len=20) :: name
integer :: age
real :: height type(person), dimension(50) :: class
end type person class(1)%name = "ZhangSan"
Array

class(2)%name = "LiSi"
class(1)%name = "ZhaoWu"

P ERF R REA NS E S O

° '
3 ° Va rl a b I e cl l Computer Network Information Center,

Chinese Academy of Sciences

» Local Variable and Global Variable

Local Variable:

= Declared inside a program, function, subroutine.
= Lifetime: created on entry to the procedure and destroyed on exit.
= Visible only within their own program unit; Same variable name in other units do not conflict.

Example:
I Inside a program ! Inside a function _ '
program main real function square(a) ! Inside a subroutine

T real, intent(in) :: a subroutine Show()

Nal:la fvisible onlyin fiah real :: tmp ! visible only in square character(len=5) :: msg =

- = 5“0 ' tmp = a*a "Hello" ! visible only in Show
print ¥, 'a=", a square = tmp print *, msg

' ' end function square end subroutine Show

end program main

3. Variable

» Local Variable and Global Variable

Global Variable:

= Declare the variables inside a module and mark them as public

P ERF R REA NS E S O

C' Computer Network Information Center,
Chinese Academy of Sciences

= Any unit (module/function/subroutine) that uses the module can access them, and their lifetime equals

that of the program.
Example:

module math_const _ - - === ==-—=
implicit none

real, parameter :: Pl = 3.14159265
real, parameter :: E =2.71828182
module math_const

integer :: count=0
contains
subroutine tick()
count = count + 1
print *, "Timer tick =", count
end subroutine tick
end module timers

program main

the constants needed
implicit none

print *, "Pl =", PI

call tick()

call tick()

print *, "Final count =", count
end program main

hERFRE T EHLNEE S
4. o pe ra to r C' Computer Network Information Center,
Chinese Academy of Sciences

- - -—m" - - - G -m

» Concept

Definition:

“Operator” is a symbol that tells the compiler to perform a specific mathematical or logical operation.

Three fundamental control structure:

= Arithmetic operator
= Relational operator
= Logical operator

:' hERFRE T EHLNEE S
4. o p e ra to r Computer Network Information Center,
Chinese Academy of Sciences

- LN - o - O -

» Arithmetic operator

Assume variable A is 5 and variable B is 2.

Operator Description Example

+ Addition: adds the two operands. A+B=7
Subtraction: subtracts the second operand from the

— first. A-B=3

* Multiplication: multiplies the two operands. A*B=10

/ Division: divides the numerator by the denominator. | A/B=2
Exponentiation: raises the first operand to the power

k* of the second. A **B=25

4. Operator

> Relational operator

Assume variable A is 5 and variable B is 2.

hERFRE T EHLNEE S
.c Computer Network Information Center,

Chinese Academy of Sciences

Operator equivalent Description Result
>3 .eq. Tests equality (A ==B) - false
/= .ne. Tests inequality (A /= B) = true
> .gt. Tests "greater than" (A > B) - true
< At. Tests "less than" (A < B) - false
>= .ge. Tests "greater than or equal” (A >= B) = true
<= le. Tests "less than or equal” (A <= B) - false

4. Operator

- LN - o - O

» Logical operator

Assume variable A is true and variable B is false.

hERFRE T EHLNEE S
I ‘ Computer Network Information Center,

Chinese Academy of Sciences

Operator Description Result
.and. Logical AND: true only if both operands are non-zero. (A .and. B) - false
.OF. Logical OR: true if either operand is non-zero. (A .or. B) = true
.not. Logical NOT: reverses the logical state. .not.(A .and. B) - true
.eqv. Logical equivalence: true if both values are equal. (A .eqv. B) - false
.neqv. Logical non-equivalence: true if values differ. (A .negv. B) - true

4. Operator N ol i athaieie
C,.C

Chinese Academy of Sciences

» Operator Precedence

Operator precedence determines how terms are grouped in an expression. This affects the way the
expression is evaluated. Some operators have higher precedence than others. For example, the
multiplication operator has higher precedence than the addition operator.

- T N

. Type —~\ 2" Operators Associativity

3 Exponentiation *x left - right
| Multiplication & Division */) left > right
Addition & Subtraction +- A~ left > right |

Relational B <<=>>= left > right

Equality == /= left & right

Logical NOT /unary minus .not. (-) left - right

Logical AND .and. _left = right

Logical OR .Or. ~ left = right

Assignment = right - left

5. Control Structure CC e o

Chinese Academy of Sciences

» Concept

Definition:

Control flow is the order that instructions are executed in a program. A control statement is a
statement that determines control flow of a set of instructions.

Three fundamental control structure:

= Sequential control
= Selection control
= lterative control

These three basic structures can be combined into complex programs to solve various problems.

5. Control Structure CC e o

Chinese Academy of Sciences

» Sequential control

Definition:

Sequential control is the simplest control structure; statements are executed one after another in the
order they are written. After each statement finishes, the program automatically proceeds to the next.

Example:

program sequential

implicit none

print *, '1' :: >

print *, '2'

print *, '3’

print *, '4'

’

v print *, ‘5
end program

5. Control Structure CC e o

Chinese Academy of Sciences

> Selection control

Definition:

Selection control decides which code segment to execute by evaluating whether a condition is true or
false. It mainly includes if statements, if-then-else, if-else-if-else and select statements.

Example:

—_———— program ifProg
—_———— implicit none

'if (a<20) then ! _
'\ print*, "ais less than 20" a 1s less than 20

@ E"gfg(g'g:l'g")"tﬂ"""""-'-‘-‘-‘-‘-‘4 a 1s less than 15
IT\a en . _

| print*, "a is more than 15" | value of a s

True False ‘else i

' print*, "ais less than 15"

rend if !

Code block1 Code block2 ‘pFint*, *valae of ais*a” """
end program ifProg

5. Control Structure CC e o

Chinese Academy of Sciences

- W - | E— — -

> Selection control

——— Example:
—— = program selectCaseProg
implicit none
character :: grade = 'B'
select case (grade)

case (‘A’) Well done
Code block1 print*, "Excellent!" Your grade 1is B
case ('B')
print*, "Well done"
Code block2 case ('C')

print*, "You passed"
case default
Code block3 print*, "Invalid grade"

end select

print*, "Your grade is ", grade
end program selectCaseProg

th ERFRITEHREE R P00

5. Control Structure €L S e

Chinese Academy of Sciences

> Iterative control

Definition:

Iterative control repeatedly executes a segment of code until the condition becomes false and the loop
exits. It mainly includes for do loops, and do-while loops.

—_———— Example: i
program factorial 7,
implicit none 3
integer :: nfact =1 4 24
integer :: n
Code block1 ! compute factorials g % gg
don=1,10
nfact = nfact * n / 2040
print*, n," ", nfact 8 40320
end do 9 362880
10 3628800

S N — end program factorial

5. Control Structure CC e o

Chinese Academy of Sciences

> Iterative control

Definition:

Iterative control repeatedly executes a segment of code until the condition becomes false and the loop
exits. It mainly includes for do loops, and do-while loops.

A Example: 2
program factorial 3
Code block2 implicit none 4
integer :: nfact =1 5 pril
Loop l integer ::n=1 6 120
! ial
< condition Code block1 dt;ovn\:ﬁ;t;e(j;aio;lg)s ; 5;38
;]Ic’?rf’:*z f:af'fl nrllact - ¢
end do’ S 10 362880
___________ 11 3628800

end program factorial

P ERF R REA NS E S O

5. Control Structure N et

Chinese Academy of Sciences

> Iterative control

“exit”: When “exit” is encountered, the current loop stops immediately and execution continues with the
code that follows the loop. If the "exit’ statement appears inside nested loops, it exits only the innermost loop.
“cycle” : The “cycle” keyword skips the remaining code in the current iteration and proceeds directly to the

next loop condition.

Example:

end program main

1

Example: .]
program main program main 1
implicit none !mpllat PRE .
integer :: i integer ::i, n 3
doi=1,100 don=1,3 %
i (i > 50) exit IS, S0 3

if (mod(i,2) == 0) cycle If (il>8) exit >
e print *, 'i=", i, 'n=", n 3
print *, | 3
end do end do :
end do 3

3

3

end program main

5. Control Structure CC e o

Chinese Academy of Sciences

> Iterative control

Unconditional exit
EXIT [do-construct-name]
Rules
“do-construct-name” must be the exact name appearing on an enclosing “DO” statement.

Example:
program factorial
implicit none
integer ::i, n
Outer:don=1, 3
inner:doi=1, 10
if (i > 8) exit Outer
print *, 'i=", i, 'n=", n
end do inner
end do Outer
end program factorial

1 n
1 n
1 n
1 n
1 n
T n
1 n
1 n

6. Procedure N et

Chinese Academy of Sciences

» Concept

Definition:
A procedure is a set of statements that performs a well-defined task and can be invoked from a program.
Information (or data) is passed to the calling program as arguments to the procedure.

There are two types of procedure:

= Functions
=« Subroutines

function name(arg1, arg2, ...) function name(arg1, arg2, ...) result (return_var_name)
[declarations, including those for the arguments] [declarations, including those for the arguments]
[executable statements] [executable statements]

end function [name] end function [name]

th ERFRITEHREE R P00

6. P roced u re c:c Computer Network Information Center,

Chinese Academy of Sciences

» Example
. function area_of _circle (r)
P.rog:?r.n calling_func implicit none
Implicit none | dummy arguments
real :: a real :: area of circle The area of a circle with radius 3.0 is
_ ; - == 28.2743340
a = area_of _circle(3.0) | ozl varitalsl s
_ | . . _ . real ::r
Print *, "The area of a circle with radius 3.0 is real :: pi
Print %, a . pi = 4 * atan (1.0)
end program calling_func area_of_circle = pi * r**2
end function area_of _circle
Note:

1.) You must specify implicit none in both the main program and the procedure.
2.) The argument r in the called function is referred to as a dummy argument.

b
6. Procedure N et

Chinese Academy of Sciences

» Intent Attribute

The intent attribute (intent(in), intent(out), intent(inout)) tells the compiler:

1. Whether the procedure will read, write, or both read and write the dummy argument.
2. It also makes the interface contract clear to the caller, improving readability and safety.

| Attribute Meaning Caller restriction
intent(in) - read-only may pass variable, constant, or expression
intent(out) | write-only ' must pass a variable

intent(inout) read-write must pass a variable

6. Procedure N ot

Chinese Academy of Sciences

» Intent Example

Program calling_func
implicit none

real :: x, y, z, disc subroutine intent_example (a, b, c, d)

implicit none

Before call intent example

x=1.0 . _ 1.00000000
y=5.0 real, intent (in) :: a 5.00000000
~ real, intent (in) :: b 2.00000000
2=2.0 : e 0.00000000
real, intent (in) :: After call intent_example
. , : . 1.00000000
call intent_example(x, v, z, disc) real, Ttent (Olit) y d 5.00000000
d=b*b-40%a*c 2.00000000

| Ie=3 17.0000000
end subroutine intent_example

Print *, "The value of the discriminant is'
Print *, disc

end program calling_func

Error: Dummy argument ‘c’ with INTENT(IN) 1n variable definition context (assignment) at (1)

th ERFRITEHREE R P00

60 P roced u re c:c Computer Network Information Center,

Chinese Academy of Sciences

» Internal procedure

Definition: Program main
implicit none
When a procedure is contained within a real - a, b
program, it is called an internal procedure g= 2-8

of that program.

Print *, "Before calling swap
Print*,"a=", a

Before calling swap

Prlnt * "b —n b = 2 - B@BBBBBB
Format style: ’ ’ b = 3.00000000
call swap(a, b) After calling swap
Print *, "After calling swap"
program name o adter Gl PR a 3.00000000
implicit none e A b 2.00000000
I type declaration statements contair,\s ’

| executable statements

contains

subroutine swap(x, y)
real :: x, y, temp

temp = x
I internal procedures X=y
y = temp

end program name

end subroutine swap
end program main

th ERFRITEHREE R P00

7. M Od u Ie c'I| Computer Network Information Center,

Chinese Academy of Sciences

» Concept

Definition:

A module is like a package where you can store functions and subroutines—especially useful when
you're writing a very large program, or when your functions/subroutines need to be reused across
several programs.

Modules are used to:

= Encapsulate subprograms, data, and interface blocks

= Define global data that can be shared by many subroutines

« Declare variables that are automatically available in any subroutine you choose
= Import an entire module into another function or subroutine for use.

P ERF R REA NS E S O

7. M Od u Ie C'Il Computer Network Information Center,

Chinese Academy of Sciences

» Concept

A module consists of two parts: Format style:

module name

[statement declarations]

= Subroutine and function definitions. [contains [subroutine and function definitions]]

end module [name]

= Statement declarations

Usage and scoping rules:
= You can add as many modules as you need; each module resides its own file and is compiled separately.

A single module can be used by many different programs.

The same module can be reused any number of times within one program.

Variables declared in the module’s specification part are global within the module.

= Variables declared in the module become global in scoping unit (program, subroutine,function, module)that uses the module.

= The use statement may appear in the main program or in any subroutine or module that needs access to entities declared in
the given module.

7. Module

Computer Network Information Center,
Chinese Academy of Sciences

c:c hERF R BN MEE2 g

» Example

module constants program module_example
implicit none use constants

real, parameter :: pi = 3.1415926536 implicit none

real, parameter :: e = 2.7182818285 real :: X, ePowerx, area, radius

x=2.0

contains radius = 7.0

subroutine show_consts() ePowerx = e ** x

print*, "Pi =", pi area = pi * radius**2

print*, "e=", e
end subroutine show_consts

call show_consts()
print*, "e raised to the power of 2.0 =", ePowerx
print*, "Area of a circle with radius 7.0 =", area

end module constants end program module_example

Compilatio Pi
= 2. 11828175
constants.mod

3.14159274

e raised to the power of 2.0 = 1.38905573
Area of a circle with radius 7.0 = 153.938049

R ERFER RS E R PO
7. M Od u Ie c:c Computer Network Information Center,

Chinese Academy of Sciences

» Accessibility

Accessibility of Variables and Subprograms in a Module:

By default, every variable and subroutine in a module is made available to any program unit that uses the module via the use

statement. However, you can restrict this visibility by using the PRIVATE and PUBLIC attributes. Any variable or subroutine declared
PRIVATE cannot be referenced outside the module.

Example:

The following sample illustrates the idea. In the earlier example we had two module variables, e and pi. Let us declare them
PRIVATE and observe the resulting output.

program module_example

module constants use constants
implicit none implicit none
real, parameter, private :: pi=3.1415926536 real :: x, ePowerx, area, radius Pouarx — o e &
real, parameter, private :: e = 2.7182818285 x=2.0 1
. Error: Symbol ‘e’ at (1) has no IMPLICIT type
contains radius = 7.0 module_2.F90:22:12:
subroutine show_consts() ePowerx = e ** x e = [e
print*, "Pi=", pi area = pi * radius**2 Error: Symbol ‘pi’ at (1) has no IMPLICIT type
print*, "e=", e call show_consts()
end subroutine show_consts print*, "e raised to the power of 2.0 =", ePowerx
end module constants print*, "Area of a circle with radius 7.0 =", area

end program module_example

8. Example & Conclusion

» Example (Compute mt)

1

J%1+ 5 = I = (1) - (0) = (1):Z
_ 4
Assume ()—1+ 5
4 T e ——
1 R JEFM(]-I-XEJ
Then Jo () = B g
2
2x —1 1
== X —
2
=1
1 — 05

8. Example & Conclusion

» Example (Compute)

Main Program (program main)

|— Module pi_computation

—— Constant definition: dp = kind(8) [Double precision type definition]

|

|

|

| F— Function 1: f_integrand(x) [Integrand function]
| | L— Computes:4.0_dp/(1.0_dp + x*x)
|
|

|

|

|

L— Function 2: compute_pi_integral(n) [Main function to compute n]
|—— Calls f_integrand(x) [Computes function value at each point]
L— Returns m approximation

L Internal subroutine in main program: test_different_intervals()
L Calls compute_pi_integral() [Tests accuracy for different n values]

Computing m by Numerical Integration
Integration Method: Midpoint Rectangle Method
Integration Interval: [0, 1]

Integrand Function: f(x) = 4/(1+x?)

Parameter Settings:
Number of intervals n = 100
Step size h = 1.0000000000000000E-002

Computation Results:
Approximate value m = 3.1416009869231254
Exact value m = 3.1415926535897931
8.3333333322777037E-006
Relative e 2.6525823845289050E-006

Performance:
Computation time = 4.0000000000005309E-006

Accuracy Test for Different Number of Intervals:

. 1424259850 8.3333E-04
.1416009869 8.3333E-06
.1415927369 8.3333E-08
10000 .1415926544 8.3334E-10
100000 .1415926536 8.3684E-12

seconds

.6526E-04
.6526E-06
.6526E-08
.6526E-10
.6637E-12

8. Example & Conclusion

» Example (Compute)

Module & Function

module pi_computation
implicit none

! Define double precision type
integer, parameter :: dp = kind(8)

! Public interface
public :: compute_pi_integral, f_integrand

contains

! Integrand function

real(dp) function f_integrand(x) result(y)
real(dp), intent(in) :: x
y=4.0 dp/(1.0_dp + x*x)

end function f_integrand

! Main function to compute nt

real(dp) function compute_pi_integral(num_intervals) result(pi_approx)

integer, intent(in) :: num_intervals

integer :: i
real(dp) :: h, x_midpoint, sum_val
! Initialization

h =1.0_dp / real(num_intervals, dp)
sum_val=0.0 dp
! Numerical integration using midpoint rectangle method
doi=1, num_intervals
I Calculate interval midpoint
Xx_midpoint = h * (real(i, dp) - 0.5_dp)
sum_val =sum_val + f_integrand(x_midpoint)
end do
! Compute it approximation
pi_approx = h * sum_val
end function compute_pi_integral
end module pi_computation

8. Example & Conclusion

» Example (Compute mt)

Main & Print & Call test_different_intervals

! Main program print *, "Integration Method: Midpoint Rectangle Method"
program main print *, "Integration Interval: [0, 1]"

use pi_computation print *, "Integrand Function: f(x) = 4/(1+x?)"

implicit none print *, "

integer :: n print *, "Parameter Settings:"

real(dp) :: pi_approx, pi_exact, error print *, " Number of intervalsn=", n

real(dp) :: start_time, end_time print *," Step sizeh =", 1.0_dp / real(n, dp)

! Set number of intervals print *, "

n =100 print *, "Computation Results:"

! Measure computation time print *, " Approximate value it =", pi_approx

call cpu_time(start_time) print *," Exact value m =", pi_exact

! Compute nt print *, " Absolute error =", error

pi_approx = compute_pi_integral(n) print *, " Relative error =", error / pi_exact

pi_exact = 4.0_dp * atan(1.0_dp) print *, "

error = abs(pi_approx - pi_exact) print *, "Performance:"
call cpu_time(end_time) print *," Computation time =", end_time - start_time, " seconds”
! Output results ! Test accuracy for different n values

print *, "========= Computing 1 by Numerical call test_different_intervals()

8. Example & Conclusion

» Example (Compute)

Main & test_different_intervals & Print

Computing m by Numerical Integration

contains Integration Method: Midpoint Rectangle Method
! Test accuracy for different numbers of intervals Integration Interval: [0, 1]
subroutine test_different_intervals() Integrand Function: f(x) = 4/(1+x?)
integer :: n_values(5) Parameter Settings:
real(dp) :: approx_values(5), errors(5) Number of intervals n = 100
integer: j Step size h = 1.0000000000000000E-002
print *, "Accuracy Test for Different Number of Intervals:" Approximate value n = 3.1416009869231254
PR non Exact value n = 3.1415926535897931
print -, TPl =, G) Absolute error 8.3333333322777037E-006
print*," n | mApprox. | Abs.Error | Rel. Error Relative error 2.6525823845289050E - 006
print *, repeat("-", 60)
Aol G Performance:
¢ i . . Computation time = 4.0000000000005309E-006 seconds
approx_values(i) = compute_pi_integral(n_values(i))
errors(i) = abs(approx_values(i) - pi_exact) Accuracy Test for Different Number of Intervals:
print '(18, A, F15.10, A, ES14.4, A, ES12.4)', n_values(i)," | ", & A55. Error
approx_values(i), " | ", errors(i)," | ", errors(i) / pi_exact
adl dla 3.1424259850 8.3333E-04 .6526E-04
int * t"-" 60 3.1416009869 8.3333E-06 .6526E-06
print *, repeat("-", 60) 3.1415927369 8.3333E-08 .6526E-08
end subroutine test_different_intervals 3.1415926544 8.3334E-10 .6526E-10

3.1415926536 8.3684E-12 .6637E-12

end program main

8. Example & Conclusion

» Conclusion

» Language Features: Fortran is concise, efficient, and specifically designed for scientific computing.

» Learning Path: We followed the progression of "variable > operator - Control Structure - procedure
— module", achieving a knowledge structure that evolves from foundational elements to functional
organization.

» Key Advice: Write more, practice more, and think more deeply. True mastery stems from consistent
practice.

[1] https://fortran-lang.org/zh CN/learn/

[2] https://www.cainiaoya.com/fortran/fortran-module.html

[3] 82 1€, Fortran 95 #2715 11, A Bl H J7 Hi i, 2002.

[4] F = %%, Fortran 95 271511, K22 H AL, 2011.

[5] S. J. Chapman, Fortran 95/2003 for Scientists and Engineers, 3rd edition, McGraw-Hill, 2007

https://www.cainiaoya.com/fortran/fortran-module.html

c‘ hERFR T EYNEES PO
.: Computer Network Information Center,

Chinese Academy of Sciences

T
jiiiinl

gl WO

