
Computer Network Information Center,
Chinese Academy of Sciences

中国科学院计算机网络信息中心

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

CONTENTS

1 Introduction

2 Example

3 Variable

4 Operator

5 Control Structure

6 Procedures

7 Module

8 Example & Conclusion

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

1. Introduction

Fortran (Formula Translation)

[1] https://www.ibm.com/history/fortran#Born+of+necessity

In the early 1950s, computer programming was the
exclusive domain of a small group of specialists who wrote
code in machine language, a complex and cumbersome set
of instructions. Programming was for experts only —
outsiders need not apply. Then came Fortran.

From its creation in 1954 and its commercial release in 1957
as the progenitor of software, Fortran (short for formula
translation) became the first computer language standard.
It helped open the door to modern computing and ranks as
one of the most influential software products in history.
Fortran liberated computers from the exclusive realm of
programmers and opened them to nearly everybody else.
And it’s still in use decades after its release [1].

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

https://www.ibm.com/history/fortran#Born+of+necessity

1. Introduction

Fortran (Formula Translation)

[1] https://www.tiobe.com/tiobe-index/
[2] https://amturing.acm.org/award_winners/backus_0703524.cfm

TIOBE index[1]

John Backus, the father of Fortran, released the first
Fortran compiler at IBM, creating the world’s first high-level
programming language—predating the arrival of C in 1972.

Fortran was specifically designed for computation-intensive
applications in science and engineering, and its strength lies
in its ability to translate complex scientific formulas into
computer code. The language was originally created to make
scientific computing more efficient and straightforward.

The feature of Fortran language :
• Easy to learn, with rigorous grammar.
• It can directly perform operations on matrices and

complex numbers.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

https://www.tiobe.com/tiobe-index/
https://amturing.acm.org/award_winners/backus_0703524.cfm

1. Introduction

[1] extension://nhppiemcomgngbgdeffdgkhnkjlgpcdi/data/pdf.js/web/viewer.html?file=https://math.ecnu.edu.cn/~jypan/Teaching/Fortran/Fortran95pjy.pdf
[2] https://gcc.gnu.org/fortran/
[3] https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/fortran-compiler.html
[4] https://www.nvidia.cn/about-nvidia/press-releases/2014/nvidia-pgi-ibm-power-systems-11202014/
[5] https://www.tutorialspoint.com/fortran/fortran_overview.htm
[6] https://www.intel.cn/content/www/cn/zh/developer/articles/release-notes/fortran-compiler/2023.html

l Original versions, Fortran I, II and III are considered obsolete now.
l Oldest version still in use is Fortran IV, and Fortran 66.
l Most commonly used versions today are : Fortran 77, Fortran 90, and Fortran 95.
l Fortran 77 added strings as a distinct type.
l Fortran 90 added various sorts of threading, and direct array processing.
l Fortran 2003,Fortran 2008, Fortran 2023

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

https://gcc.gnu.org/fortran/
https://www.intel.cn/content/www/cn/zh/developer/tools/oneapi/fortran-compiler.html
https://www.nvidia.cn/about-nvidia/press-releases/2014/nvidia-pgi-ibm-power-systems-11202014/
https://www.tutorialspoint.com/fortran/fortran_overview.htm
https://www.intel.cn/content/www/cn/zh/developer/articles/release-notes/fortran-compiler/2023.html

1. Introduction

Why Fortran？

n Numerical analysis and scientific computation
n Structured programming
n Array programming
n Modular programming
n Generic programming
n High performance computing on supercomputers
n Object oriented programming
n Concurrent programming
n Reasonable degree of portability between computer systems

Application

[1] https://www.tutorialspoint.com/fortran/fortran_overview.htm
[2] Xie, J., Yu, J., Zhou, Y., Liu, H., Wei, J., Han, X., Xu, K., Yu, M., Yu, Z., Lin, P., Jiang, J., Zheng, W., Zhang, T., Wang, R., Jing, Z., Wu, L., A 1-km resolution global ocean simulation
promises to unveil oceanic multi-scale dynamics and climate impacts, The Innovation (2025), doi: https://doi.org/10.1016/j.xinn.2025.100843

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

https://www.tutorialspoint.com/fortran/fortran_overview.htm

2. Example

program hello
 implicit none
 print *, "Hello, Fortran World!"
end program hello

program ：Tells the compiler that the main program unit
starts here and is named "hello"; it plays the same role as
int main() in C.

implicit none: Switches off Fortran’s default "implicit
typing" rule; every variable must be explicitly declared, or
the code will not compile.

 print * : The command displays data on the screen.

end program: Marks the end of the main program and pairs
with the opening program hello.

hello： The Program Name

Compilation: gfortran hello.f90 -o hello
Run: ./hello

Ø Case One

[1] https://fortran-lang.org/zh_CN/learn/quickstart/derived_types/
[2] https://www.w3ccoo.com/fortran/fortran_basic_input_output.html

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

https://fortran-lang.org/zh_CN/learn/quickstart/derived_types/
https://www.w3ccoo.com/fortran/fortran_basic_input_output.html

2. Example

program calculate
 implicit none
 real :: a, b, sum, product
 a = 5.0
 b = 3.0
 sum = a + b
 product = a * b
 print *, 'a + b = ", sum
 print *, 'a * b = ", product
end program calculate

Ø Case Two

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

2. Example

program character
 implicit none
 character(len=4) :: s1, s2
 s1 = "Fort"
 s2 = "fort"
 print *, 's1 == s2 ', s1 == s2 ! False
 print *, 's1 /= s2 ', s1 /= s2 ! True
end program character

Fortran allows both uppercase and lowercase letters.
 It is case-insensitive except for string literals.

"!" represents the comment code

Use the relational operator "/= " between the operands,
e.g. a /= b means "a is not equal to b"."== " means "equal".

Ø Case Three

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

2. Example

program calculate
 implicit none
 real :: a, b, sum, product
 a = 5.0
 b = 3.0
 sum = a + b
 product = a * b
 print *, 'a + b = ", sum
 print *, 'a * b = ", product
end program calculate

Program header: program name

Execution section: computation, control,
input/output

Program end: end program

Declaration section: variables, arrays,
parameter declarations

Ø Detail

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Naming Rules:

n Maximum length: 31 characters（Fortran 90/95，Recommended）、63 characters (Fortran 2003)
n May contain only alphanumeric characters (A~Z, a~z, 0~9) and the underscore (_)
n First character must be a letter
n Letters are case-insensitive, except when used as strings

Definition:
 A variable is the name of a storage area that a program can manipulate, usually declared with its
type and name before use.

Ø Basic Concepts & Naming Rules

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

The basic data types mainly include: INTEGER, REAL, COMPLEX, CHARACTER, and LOGICAL.

Data Type Optional Kind Selector Example & Byte Size

Integer INTEGER NO INTEGER :: m 4 bytes

INTEGER(k) k = { 1, 2, 4, 8 } INTEGER(2) :: n Short integer

Real
REAL NO REAL :: m 4 bytes

REAL(k) k = { 4, 8, 16 } REAL(8) ::n 8 bytes

DOUBLE PRECISION NO DOUBLE PRECISION ::x 8 bytes

Character CHARACTER NO CHARACTER :: str 1 byte

Logical
LOGICAL NO LOGICAL :: flag 4 bytes

LOGICAL(k) k = { 1, 2, 4, 8 } LOGICAL(1) :: flag 1 byte

Complex
COMPLEX NO COMPLEX :: m 8 bytes

COMPLEX(k) k = { 4, 8, 16 } COMPLEX(8) :: n 16bytes

DOUBLE COMPLEX NO double complex :: x 16 bytes

Basic Data type

Ø Data Types

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Variable Declaration & Initialization

Example1:
integer :: counter
real :: velocity_x
character(len=10) :: student_name
counter=1
velocity=1.0
student_name = "ZhangSan"

Declaration Syntax: data type [[, attribute]...] :: variable_list

Example2:
integer :: i=0, j=1, k=2
real :: x = 0.0, y = 1.0
complex :: z = (0.0, 0.0)
logical :: debug = .false.
character(len=20) :: msg = "Initial value"

Example3：
real, parameter :: PI = 3.141592653589793d0
real, parameter :: G = 9.81
integer, parameter :: MAX_ITER = 1000

Values unchanged during program execution

Avoid magic numbers
Improve code readability

Improve maintenance and modification

Advantage

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Array Concept

Note: In Fortran, the elements are stored column-contiguous, i.e., the leftmost subscript varies first in
memory.

Definition:
 An array is a collection of elements of the same type stored in sequence with contiguous memory
addresses.

A(1) A (2) A(3) A(4) A(5) A(6) A(7)

B(1,1) B (1,2) B(1,3) B(1,4) B(1,5) B(1,6) B(1,7)

B(2,1) B (2,2) B(2,3) B(2,4) B(2,5) B(2,6) B(2,7)

B(3,1) B (3,2) B(3,3) B(3,4) B(3,5) B(3,6) B(3,7)

Array: A(7)

Array: B(3,7)
Direction of
data contiguity

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Array Variables Declaration

Example:
real, dimension(10) :: vector
integer, dimension(5,5) :: matrix
integer, parameter :: n=6
real :: b(n,n) ! parameter constant is also allowed

Static array:

n Size is fixed at compile time and cannot be changed while the program runs
n Declaration: dimensions are written as constants or parameters

Example:
integer, allocatable :: c(:,:)
allocate(c(1000,1000)) ! allocate at run time
deallocate(c) ! manual release

Fast access

Dynamic array:
n Size is determined at run time and can be allocated, released, or resized

Save memory & Flexible size

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Array Variables Declaration

Example:
program pointerExample
implicit none
 integer, pointer :: p1
 allocate(p1)
 p1 = 1
 Print *, p1
 p1 = p1 + 4
 Print *, p1
end program pointerExample

Defeinition:

n A pointer is a type of data object that not only stores memory addresses, but also contains
more information about a specific object, such as type, level and range.
n A pointer is associated with a target through allocation or pointer assignment.

Memory

?

Allocate 4 bytes

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Array Variables Declaration

Example:
program pointerExample
implicit none
 integer, pointer :: p1
 integer, target :: t1
 Print *, p1
 Print *, t1
 p1 = p1 + 4
 Print *, p1
 Print *, t1
end program pointerExample

Target And association:

n The target is another normal variable, leaving space for it. The target variable must use the
target attribute.
n Use the association operator (=>) to associate pointer variables with target variables.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Array Variables Declaration

Example:
program pointerExample
implicit none
 integer, pointer :: p1
 integer, target :: t1
 p1=>t1
 p1 = 1
 Print *, p1; Print *, t1
 p1 = p1 + 4
 Print *, p1; Print *, t1
end program pointerExample

Target And association:

n The target is another normal variable, leaving space for it. The target variable must use the
target attribute.
n Use the association operator (=>) to associate pointer variables with target variables.

Memory

?

Allocate 4 bytes

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Derived Type (Struct)

Definition:

 The derived type is a special form of data type that can encapsulate other intrinsic types as well as
other derived types. It can be regarded as equivalent to the struct in C and C++ programming
languages.

type(person) :: student
student%name = "ZhangSan"
student%age = 20
student%height = 1.75type :: person

 character(len=20) :: name
 integer :: age
 real :: height
end type person

Example:

type(person), dimension(50) :: class
class(1)%name = "ZhangSan"
…….
class(2)%name = "LiSi"
class(1)%name = "ZhaoWu"

An element

Array

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Local Variable and Global Variable

Local Variable:

n Declared inside a program, function, subroutine.
n Lifetime: created on entry to the procedure and destroyed on exit.
n Visible only within their own program unit; Same variable name in other units do not conflict.

Example:
! Inside a program
program main
 implicit none
 real :: a ! visible only in main
 a = 5.0
print *, 'a = ", a
end program main

! Inside a function
real function square(a)
 real, intent(in) :: a
 real :: tmp ! visible only in square
 tmp = a*a
 square = tmp
end function square

! Inside a subroutine
subroutine Show()
 character(len=5) :: msg =
"Hello" ! visible only in Show
 print *, msg
end subroutine Show

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3. Variable

Ø Local Variable and Global Variable

Global Variable:

n Declare the variables inside a module and mark them as public
n Any unit (module/function/subroutine) that uses the module can access them, and their lifetime equals
that of the program.

Example:

module math_const
implicit none
real, parameter :: PI = 3.14159265
real, parameter :: E = 2.71828182
module math_const

module timers
implicit none
integer :: count = 0
contains
 subroutine tick()
 count = count + 1
 print *, "Timer tick =", count
 end subroutine tick
end module timers

program main
use timers ! Import count and tick
use math_const, only: PI ! Import only
the constants needed
implicit none
print *, "PI =", PI
call tick()
call tick()
print *, "Final count =", count
end program main

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

4. Operator

Ø Concept

Definition:

“Operator” is a symbol that tells the compiler to perform a specific mathematical or logical operation.

Three fundamental control structure:

n Arithmetic operator
n Relational operator
n Logical operator

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

4. Operator

Ø Arithmetic operator

Operator Description Example
+ Addition: adds the two operands. A + B = 7

–
Subtraction: subtracts the second operand from the
first. A – B = 3

* Multiplication: multiplies the two operands. A * B = 10

/ Division: divides the numerator by the denominator. A / B = 2

**
Exponentiation: raises the first operand to the power
of the second. A ** B = 25

Assume variable A is 5 and variable B is 2.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

4. Operator

Ø Relational operator

Operator equivalent Description Result
== .eq. Tests equality (A == B) → false
/= .ne. Tests inequality (A /= B) → true
> .gt. Tests "greater than" (A > B) → true
< .lt. Tests "less than" (A < B) → false

>= .ge. Tests "greater than or equal" (A >= B) → true
<= .le. Tests "less than or equal" (A <= B) → false

Assume variable A is 5 and variable B is 2.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

4. Operator

Ø Logical operator

Operator Description Result
.and. Logical AND: true only if both operands are non-zero. (A .and. B) → false
.or. Logical OR: true if either operand is non-zero. (A .or. B) → true

.not. Logical NOT: reverses the logical state. .not.(A .and. B) → true

.eqv. Logical equivalence: true if both values are equal. (A .eqv. B) → false
.neqv. Logical non-equivalence: true if values differ. (A .neqv. B) → true

Assume variable A is true and variable B is false.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

4. Operator

Ø Operator Precedence

Type Operators Associativity
Exponentiation ** left → right

Multiplication & Division * / left → right
Addition & Subtraction + - left → right

Relational < <= > >= left → right
Equality == /= left → right

Logical NOT /unary minus .not. (-) left → right
Logical AND .and. left → right
Logical OR .or. left → right

Assignment = right → left

Operator precedence determines how terms are grouped in an expression. This affects the way the
expression is evaluated. Some operators have higher precedence than others. For example, the
multiplication operator has higher precedence than the addition operator.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Concept

Definition:

Control flow is the order that instructions are executed in a program. A control statement is a
statement that determines control flow of a set of instructions.

Three fundamental control structure:

n Sequential control
n Selection control
n Iterative control

These three basic structures can be combined into complex programs to solve various problems.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Sequential control

Example:

 program sequential

 implicit none
 print *, '1'
 print *, '2'
 print *, '3'
 print *, '4'
 print *, ‘5’
end program

Definition:
 Sequential control is the simplest control structure; statements are executed one after another in the
order they are written. After each statement finishes, the program automatically proceeds to the next.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Selection control

Example:
program ifProg
implicit none
 integer :: a = 10
 if (a < 20) then
 print*, "a is less than 20"
 end if
 if (a > 15) then
 print*, "a is more than 15"
 else
 print*, "a is less than 15"
 end if
 print*, "value of a is",a
end program ifProg

Definition:
 Selection control decides which code segment to execute by evaluating whether a condition is true or
false. It mainly includes if statements, if-then-else, if-else-if-else and select statements.

condition

True False

Code block1 Code block2

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Selection control
 Example:

program selectCaseProg
implicit none
 character :: grade = 'B'
 select case (grade)
 case ('A')
 print*, "Excellent!"
 case ('B')
 print*, "Well done"
 case ('C')
 print*, "You passed"
 case default
 print*, "Invalid grade"
 end select
 print*, "Your grade is ", grade
end program selectCaseProg

Case 1
True

False

Select case

Code block1

True
Code block2Case 2

False

……

True
Code block3Case 3

False

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Iterative control

Definition:
 Iterative control repeatedly executes a segment of code until the condition becomes false and the loop
exits. It mainly includes for do loops, and do-while loops.

condition

True

False
Code block1

Code block2

Loop

Example:
program factorial
 implicit none
 integer :: nfact = 1
 integer :: n
 ! compute factorials
 do n = 1, 10
 nfact = nfact * n
 print*, n, " ", nfact
 end do
end program factorial

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Iterative control

Definition:
 Iterative control repeatedly executes a segment of code until the condition becomes false and the loop
exits. It mainly includes for do loops, and do-while loops.

Example:
program factorial
 implicit none
 integer :: nfact = 1
 integer :: n = 1
 ! compute factorials
 do while (n <= 10)
 nfact = nfact * n
 print*, n, " ", nfact
 end do
end program factorial

condition
True

False
Code block1

Code block2

Loop

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Iterative control

Example:
program main
 implicit none
 integer :: i
 do i = 1, 100
 if (i > 50) exit
 if (mod(i,2) == 0) cycle
 print *, i
 end do
end program main

Example:
program main
 implicit none
 integer :: i, n
 do n = 1, 3
 do i = 1, 10
 if (i > 8) exit
 print *, 'i=', i, 'n=', n
 end do
end do
end program main

 “exit”: When “exit” is encountered, the current loop stops immediately and execution continues with the
code that follows the loop. If the `exit` statement appears inside nested loops, it exits only the innermost loop.
 “cycle” : The “cycle” keyword skips the remaining code in the current iteration and proceeds directly to the
next loop condition.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5. Control Structure

Ø Iterative control

Example:
program factorial
 implicit none
 integer :: i, n
 Outer: do n = 1, 3
 inner: do i = 1, 10
 if (i > 8) exit Outer
 print *, 'i=', i, 'n=', n
 end do inner
 end do Outer
end program factorial

Unconditional exit
 EXIT [do-construct-name]
Rules
 “do-construct-name” must be the exact name appearing on an enclosing “DO” statement.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

6. Procedure

Ø Concept

Definition:
 A procedure is a set of statements that performs a well-defined task and can be invoked from a program.
Information (or data) is passed to the calling program as arguments to the procedure.

There are two types of procedure:

n Functions
n Subroutines

function name(arg1, arg2, ...)
 [declarations, including those for the arguments]
 [executable statements]
end function [name]

function name(arg1, arg2, ...) result (return_var_name)
 [declarations, including those for the arguments]
 [executable statements]
end function [name]

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

6. Procedure

Ø Example

Program calling_func
 implicit none
 real :: a
 a = area_of_circle(3.0)

 Print *, "The area of a circle with radius 3.0 is"
 Print *, a
end program calling_func

function area_of_circle (r)
implicit none
 ! dummy arguments
 real :: area_of_circle
 ! local variables
 real :: r
 real :: pi
 pi = 4 * atan (1.0)
 area_of_circle = pi * r**2
end function area_of_circle

Note:
 1.) You must specify implicit none in both the main program and the procedure.
 2.) The argument r in the called function is referred to as a dummy argument.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

6. Procedure

Ø Intent Attribute

The intent attribute (intent(in), intent(out), intent(inout)) tells the compiler:

1. Whether the procedure will read, write, or both read and write the dummy argument.
2. It also makes the interface contract clear to the caller, improving readability and safety.

Attribute Meaning Caller restriction
intent(in) read-only may pass variable, constant, or expression

intent(out) write-only must pass a variable
intent(inout) read-write must pass a variable

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

6. Procedure

Ø Intent Example

Program calling_func
 implicit none
 real :: x, y, z, disc

 x = 1.0
 y = 5.0
 z = 2.0

 call intent_example(x, y, z, disc)

 Print *, "The value of the discriminant is"
 Print *, disc

end program calling_func

subroutine intent_example (a, b, c, d)
 implicit none

 real, intent (in) :: a
 real, intent (in) :: b
 real, intent (in) :: c
 real, intent (out) :: d
 d = b * b - 4.0 * a * c
 ! c= 3
end subroutine intent_example

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

6. Procedure

Ø Internal procedure

Definition:
 When a procedure is contained within a
program, it is called an internal procedure
of that program.

Format style:
 program name
 implicit none
 ! type declaration statements
 ! executable statements
 . . .
 contains
 ! internal procedures
 . . .
 end program name

Program main
 implicit none
 real :: a, b
 a = 2.0
 b = 3.0
 Print *, "Before calling swap"
 Print *, "a = ", a
 Print *, "b = ", b
 call swap(a, b)
 Print *, "After calling swap"
 Print *, "a = ", a
 Print *, "b = ", b
contains
 subroutine swap(x, y)
 real :: x, y, temp
 temp = x
 x = y
 y = temp
 end subroutine swap
end program main

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

7. Module

Ø Concept

Definition:

 A module is like a package where you can store functions and subroutines—especially useful when
you’re writing a very large program, or when your functions/subroutines need to be reused across
several programs.

Modules are used to:

n Encapsulate subprograms, data, and interface blocks
n Define global data that can be shared by many subroutines
n Declare variables that are automatically available in any subroutine you choose
n Import an entire module into another function or subroutine for use.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

7. Module

Ø Concept

Format style:
 module name
 [statement declarations]
 [contains [subroutine and function definitions]]
end module [name]

A module consists of two parts:

n Statement declarations
n Subroutine and function definitions.

Usage and scoping rules:
n You can add as many modules as you need; each module resides its own file and is compiled separately.

n A single module can be used by many different programs.

n The same module can be reused any number of times within one program.

n Variables declared in the module’s specification part are global within the module.

n Variables declared in the module become global in scoping unit (program, subroutine,function, module)that uses the module.

n The use statement may appear in the main program or in any subroutine or module that needs access to entities declared in
the given module.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

7. Module

Ø Example

program module_example
use constants
implicit none
 real :: x, ePowerx, area, radius
 x = 2.0
 radius = 7.0
 ePowerx = e ** x
 area = pi * radius**2
 call show_consts()
 print*, "e raised to the power of 2.0 = ", ePowerx
 print*, "Area of a circle with radius 7.0 = ", area
end program module_example

module constants
implicit none
 real, parameter :: pi = 3.1415926536
 real, parameter :: e = 2.7182818285

contains
 subroutine show_consts()
 print*, "Pi = ", pi
 print*, "e = ", e
 end subroutine show_consts

end module constants

constants.mod

Compilation

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

7. Module

Ø Accessibility

Accessibility of Variables and Subprograms in a Module:
 By default, every variable and subroutine in a module is made available to any program unit that uses the module via the use
statement. However, you can restrict this visibility by using the PRIVATE and PUBLIC attributes. Any variable or subroutine declared
PRIVATE cannot be referenced outside the module.

Example:
 The following sample illustrates the idea. In the earlier example we had two module variables, e and pi. Let us declare them
PRIVATE and observe the resulting output.

program module_example
use constants
implicit none
 real :: x, ePowerx, area, radius
 x = 2.0
 radius = 7.0
 ePowerx = e ** x
 area = pi * radius**2
 call show_consts()
 print*, "e raised to the power of 2.0 = ", ePowerx
 print*, "Area of a circle with radius 7.0 = ", area
end program module_example

module constants
implicit none
 real, parameter, private :: pi = 3.1415926536
 real, parameter, private :: e = 2.7182818285
contains
 subroutine show_consts()
 print*, "Pi = ", pi
 print*, "e = ", e
 end subroutine show_consts
end module constants

Error!!!

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

8. Example & Conclusion

∫01
1
1 + �2

�� = ������⁡(�)|01 = ������⁡(1) − ������⁡(0) = ������⁡(1) =
�
4

�(�) =
4
1 + �2

∫01�(�)�� = �

� ≈
�=1

�

�
2 × � − 1
2�
 ×
1
�

=
1
�
×
�=1

�

� (
� − 0.5
�
)

Ø Example (Compute π)

Assume

Then

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

8. Example & Conclusion

Ø Example (Compute π)

Main Program (program main)
 │
 ├── Module pi_computation
 │ │
 │ ├── Constant definition: dp = kind(8) [Double precision type definition]
 │ │
 │ ├── Function 1: f_integrand(x) [Integrand function]
 │ │ └── Computes: 4.0_dp / (1.0_dp + x*x)
 │ │
 │ └── Function 2: compute_pi_integral(n) [Main function to compute π]
 │ ├── Calls f_integrand(x) [Computes function value at each point]
 │ └── Returns π approximation
 │
 └── Internal subroutine in main program: test_different_intervals()
 └── Calls compute_pi_integral() [Tests accuracy for different n values]

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

8. Example & Conclusion

Ø Example (Compute π)

module pi_computation
 implicit none

 ! Define double precision type
 integer, parameter :: dp = kind(8)

 ! Public interface
 public :: compute_pi_integral, f_integrand

contains

 ! Integrand function
 real(dp) function f_integrand(x) result(y)
 real(dp), intent(in) :: x
 y = 4.0_dp / (1.0_dp + x*x)
 end function f_integrand

 Module & Function

 ! Main function to compute π
 real(dp) function compute_pi_integral(num_intervals) result(pi_approx)
 integer, intent(in) :: num_intervals
 integer :: i
 real(dp) :: h, x_midpoint, sum_val
 ! Initialization
 h = 1.0_dp / real(num_intervals, dp)
 sum_val = 0.0_dp
 ! Numerical integration using midpoint rectangle method
 do i = 1, num_intervals
 ! Calculate interval midpoint
 x_midpoint = h * (real(i, dp) - 0.5_dp)
 sum_val = sum_val + f_integrand(x_midpoint)
 end do
! Compute π approximation
 pi_approx = h * sum_val
 end function compute_pi_integral
end module pi_computation

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

8. Example & Conclusion

Ø Example (Compute π)

! Main program
program main
 use pi_computation
 implicit none
 integer :: n
 real(dp) :: pi_approx, pi_exact, error
 real(dp) :: start_time, end_time
 ! Set number of intervals
 n = 100
 ! Measure computation time
 call cpu_time(start_time)
 ! Compute π
 pi_approx = compute_pi_integral(n)
 pi_exact = 4.0_dp * atan(1.0_dp)
 error = abs(pi_approx - pi_exact)
call cpu_time(end_time)
! Output results
 print *, "========= Computing π by Numerical
Integration ========="

 Main & Print & Call test_different_intervals

 print *, "Integration Method: Midpoint Rectangle Method"
 print *, "Integration Interval: [0, 1]"
 print *, "Integrand Function: f(x) = 4/(1+x²)"
 print *, ""
 print *, "Parameter Settings:"
 print *, " Number of intervals n = ", n
 print *, " Step size h = ", 1.0_dp / real(n, dp)
 print *, ""
 print *, "Computation Results:"
 print *, " Approximate value π ≈ ", pi_approx
 print *, " Exact value π = ", pi_exact
 print *, " Absolute error = ", error
 print *, " Relative error = ", error / pi_exact
 print *, ""
 print *, "Performance:"
 print *, " Computation time = ", end_time - start_time, " seconds“
 ! Test accuracy for different n values
 call test_different_intervals()

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

8. Example & Conclusion

Ø Example (Compute π)

contains
 ! Test accuracy for different numbers of intervals
 subroutine test_different_intervals()
 integer :: n_values(5)
 real(dp) :: approx_values(5), errors(5)
 integer :: i
 n_values = [10, 100, 1000, 10000, 100000]
 print *, "Accuracy Test for Different Number of Intervals:"
 print *, repeat("-", 60)
 print *, " n | π Approx. | Abs. Error | Rel. Error"
 print *, repeat("-", 60)
 do i = 1, 5
 approx_values(i) = compute_pi_integral(n_values(i))
 errors(i) = abs(approx_values(i) - pi_exact)
 print '(I8, A, F15.10, A, ES14.4, A, ES12.4)', n_values(i), " | ", &
 approx_values(i), " | ", errors(i), " | ", errors(i) / pi_exact
 end do
 print *, repeat("-", 60)
 end subroutine test_different_intervals
end program main

 Main & test_different_intervals & Print

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

8. Example & Conclusion

Ø Conclusion

Ø Language Features: Fortran is concise, efficient, and specifically designed for scientific computing.

Ø Learning Path: We followed the progression of "variable → operator → Control Structure → procedure
→ module", achieving a knowledge structure that evolves from foundational elements to functional
organization.

Ø Key Advice: Write more, practice more, and think more deeply. True mastery stems from consistent
practice.

[1] https://fortran-lang.org/zh_CN/learn/
[2] https://www.cainiaoya.com/fortran/fortran-module.html
[3] 彭国伦, Fortran 95 程序设计, 中国电力出版社, 2002.
[4] 白云等, Fortran 95 程序设计, 清华大学出版社, 2011.
[5] S. J. Chapman, Fortran 95/2003 for Scientists and Engineers, 3rd edition, McGraw-Hill, 2007

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

https://www.cainiaoya.com/fortran/fortran-module.html

Computer Network Information Center,
Chinese Academy of Sciences

中国科学院计算机网络信息中心

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

