
Fundamentals of OpenMP & MPI
Parallel Programming

ASC26 Student Supercomputer Challenge Training Camp

Beijing Normal UniversityJianhua Gao

2026/1/27

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

2

Background

◼ Computer system (classified from the perspective of storage
models)

➢ Shared memory computer systems

➢ Distributed memory computer systems

➢ Hybrid distributed-shared memory computer systems

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

3

Background

◼ Computer system (classified from the perspective of storage
models)

➢ Shared memory computer systems

• UMA (Uniform Memory Access)

• NUMA (Non-Uniform Memory Access)

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

4

Background

◼ Computer system (classified from the perspective of storage
models)

➢ Distributed memory computer systems

• Multiple nodes are connected together through a network, with each
node's processor having its own local memory.

• Compared to shared memory systems, distributed systems offer
excellent scalability.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

5

Background

◼ Computer system (classified from the perspective of storage
models)

➢ Hybrid distributed-shared memory computer systems

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

6

Background

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

7

Outline for OpenMP

OpenMP Introduction01

Parallel Region02

Work Sharing03

Data Environment04

Synchronization05

Library Routines and Environment Variables06

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

8

Outline for OpenMP

OpenMP Introduction01

Parallel Region02

Work Sharing03

Data Environment04

Synchronization05

Library Routines and Environment Variables06

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

9

01 OpenMP Introduction

◼ What is OpenMP ?

➢ A parallel programming model designed for shared-memory system

➢ An industry-standard API for multithreaded programming

➢ Consisting of a set of compiler directives, runtime library routines,
and environment variables

➢ Facilitating multithreaded programming in Fortran, C, and C++

➢ Offering simplicity in programming, good portability, and excellent
scalability

www.openmp.org

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

10

01 OpenMP Introduction

◼ Parallel Execution Model

➢ OpenMP is a thread-based parallel programming model

➢ It adopts the Fork-Join parallel execution model

➢ Utilizing thread pool technology, where multiple threads are initiated
once the program starts.

Master

thread

Parallel execution region

fork join

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

11

01 OpenMP Introduction

◼ OpenMP Example in C

#include <omp.h>
#include <stdio.h>
int main() {
int nthreads,tid;
#pragma omp parallel private(nthreads,tid)
{
tid=omp_get_thread_num();
printf("Hello, world from OpenMP thread %d\n", tid);
if (tid==0) {
nthreads=omp_get_num_threads();
printf(" Number of threads %d\n", nthreads);

}
}
return 0;

}

⚫ Compiler directive: #pragma omp

⚫ Header file：omp.h

⚫ Compile
 gcc –fopenmp hello.c
icc –openmp hello.c

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

12

01 OpenMP Introduction

◼ OpenMP Example in C

#include <omp.h>
#include <stdio.h>
int main() {
int nthreads,tid;
#pragma omp parallel private(nthreads,tid)
{
tid=omp_get_thread_num();
printf("Hello, world from OpenMP thread %d\n", tid);
if (tid==0) {
nthreads=omp_get_num_threads();
printf(" Number of threads %d\n", nthreads);

}
}
return 0;

}

⚫ Compiler directive: #pragma omp

⚫ Header file：omp.h

⚫ Compile
 gcc –fopenmp hello.c
icc –openmp hello.c

Hello World from OpenMP thread 2
Hello World from OpenMP thread 0
Number of threads 4
Hello World from OpenMP thread 3
Hello World from OpenMP thread 1

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

13

01 OpenMP Introduction

◼ OpenMP Example in Fortran

program hello
use omp_lib
implicit none
integer :: tid, nthreads

!$omp parallel private(tid)
tid = omp_get_thread_num()
write(*,100) "Hello, world from OpenMP thread ", tid
if (tid==0) then

nthreads=omp_get_num_threads();
write(*,100) "Number of threads ", nthreads

endif
!$omp end parallel

100 format(1X,A,I1,/)
end

⚫ Compiler directive: !$omp

⚫ Module: omp_lib

⚫ Compile
 gfortran –fopenmp hello.f90
ifort –openmp hello.f90

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

14

01 OpenMP Introduction

◼ Compiler Directives

➢ OpenMP achieves parallelization by adding compiler directives to
serial programs.

➢ Compiler directives consist of three parts: a directive prefix, a
directive itself, and clauses, with the general format:

#pragma omp directive-name [clause, ...]

Directive Prefix.
Such a prefix is
required for all
directives.

Directive. A valid directive
must appear between the
directive prefix and its
clauses.

Clauses. In the absence of
other constraints, clauses
can be unordered. This part
may also be omitted entirely.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

15

01 OpenMP Introduction

◼ Compiler Directives can be broadly categorized into four types

➢ Parallel Region Directive

• Generates a parallel region, i.e., creates multiple threads to execute tasks in
parallel.

• All parallel tasks must be placed within a parallel region to be potentially executed
in parallel.

➢ Work-Sharing Directive

• Responsible for dividing tasks and distributing them among threads.
• Work-sharing directives do not create new threads and must therefore be placed

inside a parallel region.

➢ Synchronization Directive

• Handles synchronization between parallel threads.

➢ Data Environment

• Manages the attributes (shared or private) of variables within a parallel region, as
well as data transfer between boundaries (serial regions and parallel regions).

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

16

01 OpenMP Introduction

◼ Most OpenMP compiler directives apply to the structured block that
follows them

➢ A structured block is a block of statements with only one entry point (at the
top) and one exit point (at the bottom), with no branches that jump outside
the block.

➢ Exception: Fortran's STOP statement and C/C++’s exit() are allowed within a
structured block.

A structured block
One entry point, one exit point

Not a structured block
Two entry points, one exit point

if (go_now()) goto more;
#pragma omp parallel
{

int id = omp_get_thread_num();
more: res[id] = do_big_job(id);

if (conv (res[id]) goto done;
goto more;

}
done: if (!really_done()) goto more;

#pragma omp parallel
{

int id = omp_get_thread_num();
more: res[id] = do_big_job (id);

if (conv (res[id]) goto more;
}
printf (“All done\n”);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

17

Outline for OpenMP

OpenMP Introduction01

Parallel Region02

Work Sharing03

Data Environment04

Synchronization05

Library Routines and Environment Variables06

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

18

02 Parallel Region

◼ Code inside a parallel region will be executed in parallel by multiple
threads.

◼ At the end of the parallel region, there is an implicit synchronization
(barrier).

◼ Clauses are used to specify additional information for the parallel region.
If there are multiple clauses, they are separated by spaces.

◼ Specific format:

#pragma omp parallel [clause[[,]clause]…]

clause=

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

Fortran

!$omp parallel [clause clause ...]

structured-block

!$omp end parallel

C/C++

#pragma omp parallel [clause clause ...]
{

structured-block
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

19

02 Parallel Region

#include <omp.h>
#include <stdio.h>
int main() {
int nthreads,tid;
#pragma omp parallel default(shared) private(nthreads,tid)
{
tid=omp_get_thread_num();
printf("Hello, world from OpenMP thread %d\n", tid);
if (tid==0) {
nthreads=omp_get_num_threads();
printf(" Number of threads %d\n", nthreads);

}
}
return 0;

}

◼ OpenMP Example in C

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

20

Outline for OpenMP

OpenMP Introduction01

Parallel Region02

Work Sharing03

Data Environment04

Synchronization05

Library Routines and Environment Variables06

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

21

03 Work Sharing

◼ OpenMP uses work-sharing compiler directives to divide and assign
tasks to multiple threads for parallel execution

◼ Work-sharing directives are mainly divided into three categories:

➢ omp for: Responsible for partitioning and distributing loop tasks.

➢ omp sections: Specifies a parallel region containing multiple
structured blocks that can be executed in parallel.

➢ omp task: Explicitly defines a task, which is then placed into a task
queue to await execution.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

22

03 Work Sharing

◼ When using work-sharing directives, the following points should be
noted:

➢ Work-sharing directives are not responsible for creating or managing
parallel regions; they must be used within a #pragma omp
parallel region.

➢ If a work-sharing directive region is not placed inside a parallel region,
it will only be executed serially by a single thread.

➢ An implicit barrier synchronization exists at the end of the work-
sharing region (this can be avoided by using the nowait clause).

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

23

03 Work Sharing——omp for

◼ omp for directive

➢ Each thread is assigned a set of loop
iterations, and there are no
dependencies between the iterations.

➢ There is an implicit synchronization
barrier at the end of the loop execution.

// assume N=12
#pragma omp parallel
#pragma omp for

for(i = 1, i < N+1, i++)
c[i] = a[i] + b[i];

#pragma omp parallel

#pragma omp for

Implicit barrier

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

24

03 Work Sharing——omp for

◼ The for directive specifies that the following loop is executed in parallel
by threads in the thread pool.

◼ Specific format：

24

#pragma omp for [clause[[,]clause]…]
[clause]=

Schedule(type [,chunk])
ordered
private (list)
firstprivate (list)
lastprivate (list)
shared (list)
reduction (operator: list)
nowait

Fortran

!$omp do [clause clause ...]

do-loops

!$omp end do

C/C++

#pragma omp for [clause clause ...]
{

for-loops
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

25

03 Work Sharing——omp for

◼ The parallel region and the work-sharing construct can be combined into
a single compiler directive.

#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

}

#pragma omp parallel for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

26

03 Work Sharing——omp for

◼ schedule clause

➢ The schedule clause describes how loop iterations are divided among the
threads in the thread team.

➢ Syntax: schedule(type[, size])

• type: specifies the scheduling strategy.

• size: specifies the chunk size (the number of loop iterations) and must be an
integer.

➢ Scheduling strategy types

• static: Static scheduling; the chunk size is fixed and specified by size.

• dynamic: Dynamic scheduling; the chunk size is fixed and specified by size.

• guided: Dynamic scheduling; the chunk size decreases over time, with the
minimum chunk size specified by size.

• runtime: The scheduling strategy is determined at runtime.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

27

03 Work Sharing——omp for

◼ schedule(static, size)

➢ Omitting size: The iteration space is divided into chunks of equal (or near-
equal) size, with each thread assigned one chunk.

➢ Specifying size: The iteration space is divided into chunks of a specified size,
which are then assigned to threads in a round-robin fashion.

Example: Given 4 threads and a total of 40 iterations:

schudule(static)

schudule(static, 4)

T0 T1 T2 T3

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

28

03 Work Sharing——omp for

◼ schedule(dynamic, size)

➢ The iteration space is divided into chunks of a specified size, which are then
assigned to threads on a first-come, first-served basis.

➢ When size is omitted, the default value is 1.

◼ schedule(guided, size)

➢ Similar to dynamic scheduling, but the size of assigned chunks starts large and
decreases over time, using the GSS (Guided Self-Scheduling) algorithm.

➢ Size specifies the minimum chunk size; when size is omitted, the default value
is 1.

◼ schedule(runtime)

➢ The scheduling policy depends on the value of the OMP_SCHEDULE

environment variable.

➢ It is illegal to specify a size when using runtime.

export OMP_SCHEDULE=DYNAMIC, 4；

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

29

03 Work Sharing——omp sections

◼ Code between two #pragma omp section directives is called a section.

◼ Any number of sections can be defined, and they are assigned to multiple threads
for concurrent execution.

◼ Each section is executed exactly once by only one thread.

◼ If the number of threads exceeds the number of sections, each thread executes at
most one section.

◼ If the number of threads is fewer than the number of sections, each thread may
execute more than one section.

#pragma omp sections clause1 clause2 ...
{

#pragma omp section
Structured block
#pragma omp section
Structured block

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

30

03 Work Sharing——omp sections

◼ omp sections example

Serial Parallel

#pragma omp parallel sections
{

#pragma omp section
phase1();
#pragma omp section
phase2();
#pragma omp section
phase3();

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

31

03 Work Sharing——omp sections

◼ Functional Parallelism Example

#pragma omp parallel sections
{
#pragma omp section /*Removable*/

a = alice();
#pragma omp section

b = bob();
#pragma omp section

c = cy();
}
s = boss(a, b);
printf ("%6.2f\n", bigboss(s,c));

alice bob

boss

bigboss

cy

a = alice();
b = bob();
s = boss(a, b);
c = cy();
printf ("%6.2f\n",

bigboss(s,c));

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

32

03 Work Sharing——omp sections

◼ Functional Parallelism Example

#pragma omp parallel sections
{
#pragma omp section /*Removable*/

a = alice();
#pragma omp section

b = bob();
}
#pragma omp parallel sections
{
#pragma omp section /*Removable*/

c = cy();
#pragma omp section

s = boss(a, b);
}
printf ("%6.2f\n", bigboss(s,c));

a = alice();
b = bob();
s = boss(a, b);
c = cy();
printf ("%6.2f\n",

bigboss(s,c));

alice bob

boss

bigboss

cy

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

33

03 Work Sharing——omp task

◼ New Features in OpenMP 3.0

◼ Ideal for irregular parallelism:

➢ Loops with undetermined boundaries

➢ Recursive algorithms

➢ Producer/Consumer patterns

◼ #pragma omp task explicitly defines a task.

➢ A task is an independent unit of work that may be
executed immediately by the encountering thread, or
deferred to other threads in the thread pool.

➢ Task execution depends on the OpenMP Task
Scheduler at runtime.

➢ The difference between task and for/sections: task
defines work "dynamically." Serial Parallel

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

34

03 Work Sharing——omp task

A thread pool of 8 threads is created.
#pragma omp parallel num_threads(8)
{
#pragma omp single private(p)
{
…
while (p) {
#pragma omp task
{
processwork(p);

}
p = p->next;

}
}

}

The code block specified by the
single directive is executed by only
one thread (the first one to reach

it).

The thread executing the single
block continuously generates tasks,

which are then assigned to idle
threads in the thread pool by the

runtime system.

All threads synchronize at the end
of the single code block.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

35

03 Work Sharing——omp task

Block 1

Block 2
Task 1

Block 2
Task 2

Block 2
Task 3

Block 3

Block 3
Tim

e

Single
Thread

Block 1

Block 3

Block 3

Thr1 Thr2 Thr3 Thr4

Block 2
Task 2

Block 2
Task 1

Block 2
Task 3

Time Saved

Id
le

Id
le

#pragma omp parallel
{

#pragma omp single
{ // block 1

node * p = head;
while (p) { //block 2
#pragma omp task

process(p);
p = p->next; //block 3
}

}
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

36

Outline for OpenMP

OpenMP Introduction01

Parallel Region02

Work Sharing03

Data Environment04

Synchronization05

Library Routines and Environment Variables06

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

37

04 Data Environment

◼ Data Scoping: Which variables are shared across multiple threads, and
which are private?

◼ OpenMP is a parallel programming model for shared-memory systems;
threads communicate via shared variables.

◼ Shared Variables:

➢ C/C++: Global variables (file or namespace scope), static variables, constants, etc.

➢ Fortran: COMMON blocks, SAVE variables, MODULE variables, etc.

◼ Private Variables:

➢ Variables declared inside a parallel region (explicitly private).

➢ Variables explicitly declared using the private clause.

➢ Loop iteration variables.

➢ Variables on the stack of functions called within a parallel region (local variables defined
inside functions).

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

38

04 Data Environment

◼ Data Race Issues

➢ The following loop cannot
execute correctly.

#pragma omp parallel for

for(k=0;k<100;k++) {

x=array[k]；

 array[k]=do_work(x);

}

• Declare variables inside the parallel region;
such variables are inherently private.
#pragma omp parallel for

for(k=0;k<100;k++) {

int x;

x=array[k]；

 array[k]=do_work(x);

}

➢ The correct approach:

• Declare as a private variable directly.

#pragma omp parallel for private(x)

for(k=0;k<100;k++) {

x=array[k]；

 array[k]=do_work(x);

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

39

04 Data Environment

◼ Two ways to control the data environment during parallel execution:

➢ Independent OpenMP directives.

• #pragma omp threadprivate(list)

➢ Data-sharing attribute clauses of OpenMP directives.

• private

• shared

• default

• firstprivate

• lastprivate

• copyin

• reduction

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

40

04 Data Environment

◼ threadprivate Directive

➢ Used to declare a global or static variable as private to each thread (rather
than private to a specific parallel region). For example, a Thread ID that
retains the same value across multiple parallel regions.

➢ The directive must immediately follow the variable declaration.

int A(100), B;
double C;
#pragma omp threadprivate(A, B, C)

➢ Execution Mechanism:
• When the program first enters a parallel

region, each thread creates a copy of the
variable marked as threadprivate.

• The initial value of each copy is
unpredictable (random memory address,
uninitialized).

int a;
#pragma omp threadprivate(a)
#pragma omp parallel
{

a = OMP_get_thread_num();
}
#pragma omp parallel
{

printf(“a=%d\n”,a);
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

41

04 Data Environment

#include <stdio.h>
#include <omp.h>
int global_var = 20;
#pragma omp threadprivate(global_var)

int main() {
#pragma omp parallel num_threads(4)
{

int thread_id = omp_get_thread_num();
global_var = global_var + thread_id + 1;
printf("In parallel 1 (Thread %d): global_var = %d\n", thread_id,

global_var);
}
#pragma omp parallel num_threads(4)
{

int thread_id = omp_get_thread_num();
printf("before: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
global_var = global_var + thread_id + 1;
printf("after: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
}
// 并行区域结束后显示变量的值

 printf("After parallel: global_var = %d\n", global_var);
return 0;

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

42

04 Data Environment

#include <stdio.h>
#include <omp.h>
int global_var = 20;
#pragma omp threadprivate(global_var)

int main() {
#pragma omp parallel num_threads(4)
{

int thread_id = omp_get_thread_num();
global_var = global_var + thread_id + 1;
printf("In parallel 1 (Thread %d): global_var = %d\n", thread_id,

global_var);
}
#pragma omp parallel num_threads(4)
{

int thread_id = omp_get_thread_num();
printf("before: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
global_var = global_var + thread_id + 1;
printf("after: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
}
// 并行区域结束后显示变量的值

 printf("After parallel: global_var = %d\n", global_var);
return 0;

}

Execution output:
In parallel 1 (Thread 0): global_var = 21
In parallel 1 (Thread 2): global_var = 23
In parallel 1 (Thread 1): global_var = 22
In parallel 1 (Thread 3): global_var = 24
before: In parallel 2 (Thread 0): global_var = 21
before: In parallel 2 (Thread 2): global_var = 23
after: In parallel 2 (Thread 2): global_var = 26
after: In parallel 2 (Thread 0): global_var = 22
before: In parallel 2 (Thread 1): global_var = 22
after: In parallel 2 (Thread 1): global_var = 24
before: In parallel 2 (Thread 3): global_var = 24
after: In parallel 2 (Thread 3): global_var = 28
After parallel: global_var = 22

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

43

04 Data Environment

◼ copyin Clause

➢ The copyin clause copies the value of a threadprivate variable from the
master thread to the corresponding variables in each thread within the
parallel region.

➢ Arguments in the copyin clause must be declared as threadprivate.

➢ Syntax: copyin(list)

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

44

04 Data Environment

#include <stdio.h>
#include <omp.h>
int global_var = 20;
#pragma omp threadprivate(global_var)

int main() {
#pragma omp parallel num_threads(4)
{

int thread_id = omp_get_thread_num();
global_var = global_var + thread_id + 1;
printf("In parallel 1 (Thread %d): global_var = %d\n", thread_id,

global_var);
}
#pragma omp parallel num_threads(4) copyin(global_var)

{
int thread_id = omp_get_thread_num();
printf("before: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
global_var = global_var + thread_id + 1;
printf("after: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
}
// 并行区域结束后显示变量的值

 printf("After parallel: global_var = %d\n", global_var);
return 0;

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

45

04 Data Environment

#include <stdio.h>
#include <omp.h>
int global_var = 20;
#pragma omp threadprivate(global_var)

int main() {
#pragma omp parallel num_threads(4)
{

int thread_id = omp_get_thread_num();
global_var = global_var + thread_id + 1;
printf("In parallel 1 (Thread %d): global_var = %d\n", thread_id,

global_var);
}
#pragma omp parallel num_threads(4) copyin(global_var)

{
int thread_id = omp_get_thread_num();
printf("before: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
global_var = global_var + thread_id + 1;
printf("after: In parallel 2 (Thread %d): global_var = %d\n",

thread_id, global_var);
}
// 并行区域结束后显示变量的值

 printf("After parallel: global_var = %d\n", global_var);
return 0;

}

Execution output:
In parallel 1 (Thread 0): global_var = 21
In parallel 1 (Thread 1): global_var = 22
In parallel 1 (Thread 3): global_var = 24
In parallel 1 (Thread 2): global_var = 23
before: In parallel 2 (Thread 3): global_var = 21
after: In parallel 2 (Thread 3): global_var = 25
before: In parallel 2 (Thread 1): global_var = 21
after: In parallel 2 (Thread 1): global_var = 23
before: In parallel 2 (Thread 2): global_var = 21
after: In parallel 2 (Thread 2): global_var = 24
before: In parallel 2 (Thread 0): global_var = 21
after: In parallel 2 (Thread 0): global_var = 22
After parallel: global_var = 22

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

46

04 Data Environment

◼ private clause

➢ The private clause specifies that
the variables in its list are local to
each thread within the parallel
region.

➢ Syntax: private(list)

➢ private variables are "undefined"
upon entering and exiting the
parallel region. This means there is
no association between the private
variable inside the parallel region
and the variable with the same
name outside the region.

int main(int argc, _TCHAR* argv[]){
int A=100,B,C=0;
#pragma omp parallel for private(A,B)
for(int i = 0; i<10;i++){

B = A + i; // "A" is uninitialized;
Error.！

printf("%d\n",i);
}

C = B; // "B" is uninitialized; Error.！

printf("A:%d\n", A);
printf("B:%d\n", B);
return 0;

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

47

04 Data Environment

#include <stdio.h>
#include <omp.h>
int main() {

int var = 1;
#pragma omp parallel private(var) num_threads(4)
{

int thread_id = omp_get_thread_num();
var = thread_id + 1;
printf("In parallel 1 (Thread %d): var = %d\n", thread_id, var);

}
#pragma omp parallel private(var) num_threads(4)
{

int thread_id = omp_get_thread_num();
printf("Before: In parallel 2 (Thread %d): var = %d\n", thread_id, var);
var = var + thread_id + 1;
printf("After: In parallel 2 (Thread %d): var = %d\n", thread_id, var);

}
// 并行区域结束后显示变量的值

 printf("After parallel: var = %d\n", var);
return 0;

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

48

04 Data Environment

#include <stdio.h>
#include <omp.h>
int main() {

int var = 1;
#pragma omp parallel private(var) num_threads(4)
{

int thread_id = omp_get_thread_num();
var = thread_id + 1;
printf("In parallel 1 (Thread %d): var = %d\n", thread_id, var);

}
#pragma omp parallel private(var) num_threads(4)
{

int thread_id = omp_get_thread_num();
printf("Before: In parallel 2 (Thread %d): var = %d\n", thread_id, var);
var = var + thread_id + 1;
printf("After: In parallel 2 (Thread %d): var = %d\n", thread_id, var);

}
// 并行区域结束后显示变量的值

 printf("After parallel: var = %d\n", var);
return 0;

}

Execution output:
In parallel 1 (Thread 3): var = 4
In parallel 1 (Thread 0): var = 1
In parallel 1 (Thread 2): var = 3
In parallel 1 (Thread 1): var = 2
Before: In parallel 2 (Thread 3): var = 0
After: In parallel 2 (Thread 3): var = 4
Before: In parallel 2 (Thread 1): var = 0
After: In parallel 2 (Thread 1): var = 2
Before: In parallel 2 (Thread 2): var = 0
After: In parallel 2 (Thread 2): var = 3
Before: In parallel 2 (Thread 0): var = 32661
After: In parallel 2 (Thread 0): var = 32662
After parallel: var = 1

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

49

04 Data Environment

◼ firstprivate Clause

➢ firstprivate variables are initialized upon entering the parallel region using the
value of the variable from outside the region.

➢ Syntax: firstprivate(list)

◼ lastprivate Clause

➢ If a private variable inside the parallel region needs to pass its calculated value
back to the variable with the same name outside the region upon exit,
lastprivate can be used.

➢ Syntax: lastprivate(list)

➢ The value from the last logical iteration of a loop is assigned to the variable
outside the parallel region.

int A = 100;
#pragma omp parallel for lastprivate(A)
for(int i = 0; i<10;i++){

A = 10 + i;
}
printf("%d\n",A);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

50

04 Data Environment

◼ shared Clause

➢ The shared clause declares that variables are shared among multiple threads, meaning
the variables inside and outside the parallel region point to the same memory location.
Consequently, one must be cautious of data races.

➢ Syntax: shared(list)

◼ default Clause

➢ Specifies the default data-sharing attributes for variables within a parallel region.

➢ Syntax: default(shared | none)

➢ default(shared): Variables within the parallel region default to shared if not explicitly
declared as private.

➢ default(none): Forces the explicit declaration of data-sharing attributes for all variables;
otherwise, a compilation error will occur.

int sum = 0;
#pragma omp parallel for shared(sum)
for(int i = 0; i < COUNT; i++){

sum = sum + i;
}
printf("%d\n",sum);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

51

04 Data Environment

◼ reduction Clause

➢ specifies an operator for a variable. Each thread creates a private copy of the
reduction variable. At the end of the parallel region, the values of these
private copies are combined according to the specified operator, and the final
result is assigned to the original variable.

➢ Common Reduction Operators and Initial Values:+(0),-
(0),*(1),^(0),&(~0),|(0),&&(1),||(0)

➢ Syntax: reduction(operator:list)

int sum = 0;
#pragma omp parallel for reduction(+:sum)
for(int i = 0; i < COUNT; i++){

sum = sum + i;
}
printf("%d\n",sum);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

52

04 Data Environment

◼ Numerical Integration Method to Calculate Pi

4.0

2.0

1.00.0


4.0

(1+x2)

dx = 

0

1
static long num_steps=100000;
double step, pi;

void main()
{ int i;

double x, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for \

private(i, x) reduction(+:sum)
for (i=0; i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0 + x*x);

}
pi = step * sum;
printf(“Pi = %f\n”,pi);

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

53

Outline for OpenMP

OpenMP Introduction01

Parallel Region02

Work Sharing03

Data Environment04

Synchronization05

Library Routines and Environment Variables06

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

54

05 Synchronization

◼ OpenMP Directives for Thread Synchronization

➢single

➢master

➢critical

➢barrier

➢

process(item[i]);

}

}

➢atomic

➢ordered

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

55

05 Synchronization

◼ master Directive

➢ Specifies that a structured block is executed only by the master thread; other
threads skip the block and continue execution. It is commonly used for I/O
operations.

➢ There is no implicit barrier at the end of the block.

➢ Syntax: #pragma omp master [clauses]

#pragma omp parallel {
DoManyThings();

#pragma omp master {
//if not master skip to next stmt

ExchangeBoundaries();
}
DoManyMoreThings();

}

#pragma omp parallel {
DoManyThings();

#pragma omp single {
ExchangeBoundaries();

}
// threads wait here for single

DoManyMoreThings();

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

56

05 Synchronization

◼ critical Directive

➢ Specifies that a structured block can only be executed by one thread at a time.
Other threads are blocked outside the critical section. It is used to protect
modifications to shared variables and avoid data races.

➢ If the name is omitted, the name is assumed to be null.

➢ When using named critical sections, an application can have multiple distinct
critical sections. Generally, all critical sections should be named.

➢ Syntax: #pragma omp critical [(name)]

float RES;
#pragma omp parallel
{ float B;
#pragma omp for

for(int i=0; i<niters; i++){
B = big_job(i);
#pragma omp critical (RES_lock)
consum (B, RES);

}
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

57

05 Synchronization

◼ barrier Directive

➢ The barrier directive is used to synchronize all threads within a thread team.

➢ Threads that arrive first are blocked here, waiting for the remaining threads to
catch up.

➢ An implicit barrier exists at the end of parallel, for, sections, and single

structured blocks.

➢ The implicit barrier at the end of for, sections, and single blocks can be
removed using the nowait clause.

➢ Deadlock Warning: Either all threads must encounter the barrier, or no
threads should encounter it; otherwise, a deadlock will occur.

➢ Syntax: #pragma omp barrier #pragma omp parallel shared (A, B, C)
{

DoSomeWork(A,B);
printf(“Processed A into B\n”);

#pragma omp barrier
DoSomeWork(B,C);
printf(“Processed B into C\n”);

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

58

05 Synchronization

◼ atomic Directive

➢ Specifies that a specific memory location will be updated atomically.

➢ Syntax:

#pragma omp atomic

statement

➢ Supported statement formats for atomic:

x binop = expr

x++

++x

x--

--x

x is a scalar
expr is a scalar expression that does not reference x and is not overloaded
binop is one of +, *, -, /, &, ^, |, >>, or <<, and is not overloaded.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

59

05 Synchronization

◼ atomic Directive

➢ The atomic directive allows parallel updates to different array elements,
whereas the critical directive serializes all updates to the array.

➢ To avoid data races during shared memory updates, atomic should be
prioritized over critical sections whenever possible.

#pragma omp parallel for shared(x, y, index, n)
for (i = 0; i < n; i++) {

#pragma omp atomic
x[index[i]] += work1(i);

y[i] += work2(i);
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

60

05 Synchronization

◼ ordered Directive

➢ Specifies that the structured block within a parallel loop must be executed in
the sequential order of the loop iterations. Only one thread can execute the
ordered section at any given time, following the logical order of the loop
index.

➢ It can only appear within the dynamic extent of a parallel for construct.

➢ Syntax: #pragma omp ordered

vector<int> v;
#pragma omp parallel for ordered
for (int i = 0; i < n; ++i){

...
#pragma omp ordered
v.push_back(i);

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

61

Outline for OpenMP

OpenMP Introduction01

Parallel Region02

Work Sharing03

Data Environment04

Synchronization05

Library Routines and Environment Variables06

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

62

06 Library Routines and Environment Variables

◼ OpenMP Runtime Library Routines

➢ Set/Get the number of threads or thread ID.

• omp_get_num_threads() / omp_set_num_threads()

• omp_get_thread_num()

• omp_get_max_threads()

➢ Determine if the code is currently executing within a parallel region.

• omp_in_parallel()

➢ Obtain the number of processor cores available in the system.

• omp_get_num_procs()

➢ Program timing (Wall-clock time).

• omp_get_wtime()

double start = omp_get_wtime();
#pragma omp parallel
{

... //work to be timed
}
double end = omp_get_wtime();
//Get wall-clock time in seconds.

double time = end – start;

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

63

06 Library Routines and Environment Variables

◼ Environment Variables

➢ OMP_NUM_THREADS: Sets the maximum number of threads to use.

• setenv OMP_NUM_THREADS 4 // Windows (CMD/PowerShell style)

• export OMP_NUM_THREADS=4 // Linux/Unix (Bash style)

➢ OMP_SCHEDULE: Sets the scheduling type for DO (Fortran) or for (C/C++)
loops.

• setenv OMP_SCHEDULE "DYNAMIC, 4"

➢ OMP_DYNAMIC: Determines whether the number of threads used for a
parallel region can be adjusted dynamically. The value is either TRUE or FALSE
(Default: TRUE).

➢ OMP_NESTED: Determines whether nested parallelism is enabled (Default:
FALSE).

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

64

Outline for MPI

MPI Introduction01

MPI Basic Functions02

Point-to-Point Communication03

Collective Communication04

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

65

Outline for MPI

MPI Introduction01

MPI Basic Functions02

Point-to-Point Communication03

Collective Communication04

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

66

01 MPI Introduction

◼ Message-Passing Programming Model

◼ Processes have independent address spaces; processes communicate via MPI
(Message Passing Interface).

◼ Inter-process communication includes：

➢ Synchronization

➢ Data communication (data is transferred from one process’s address space to another
process’s address space)

Process Process

MPI

MPI

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

67

01 MPI Introduction

◼ Message-Passing Programming Model

➢ Communication between processes is achieved by sending and receiving messages.

➢ A message is an encapsulation of data.

➢ Example: parallel sorting

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

68

01 MPI Introduction

◼ What is MPI?

➢ It is a functional library specification, not a programming language; operations are
invoked like library calls.

➢ It is a standard and specification, not a specific implementation, and is language-
independent.

➢ It is a message-passing programming model, and has become the representative and de
facto standard for this model.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

69

01 MPI Introduction

◼ History of MPI（ www.mpi-forum.org ）

➢ MPI-1: 1994

• Supports classical message-passing programming (point-to-point communication,
collective communication, etc.)

• MPICH: the most popular open-source MPI implementation, jointly developed by
Argonne National Laboratory and Mississippi State University

➢ MPI-2: 1997

• Dynamic process management, parallel I/O, remote memory access, support for
F90 and C++

➢ MPI-3: 2012

➢ MPI-4: 2021

➢ MPI-5: 2025

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

70

01 MPI Introduction

◼ Why use MPI？

➢ Standardization ： MPI has become the standard for parallel programming on
distributed-memory systems

➢ Portability ： applications can be ported across MPI-supported platforms without
modifying source code.

➢ Performance optimization ： vendors’ MPI implementations can exploit hardware
characteristics for optimization.

➢ Functionality：the MPI standard defines rich functionality.

➢ Availability：there are multiple open-source and commercial implementations.

• Major open-source implementations include MPICH and Open MPI.

• Industry implementations based on MPICH include:

• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-
MX

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

71

Outline for MPI

MPI Introduction01

MPI Basic Functions02

Point-to-Point Communication03

Collective Communication04

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

72

02 MPI Basic Functions

#include <stdio.h>
#include "mpi.h"

main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
printf("Hello, world!\n");
MPI_Finalize();

}

program main
include 'mpif.h'
integer ierr

call MPI_INIT(ierr)
print *, 'Hello, world!'
call MPI_FINALIZE(ierr)
end

Hello world(Fortran)Hello world(C)

◼ “Hello World” Example

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

73

02 MPI Basic Functions

◼ MPI Function Conventions in C and Fortran

➢ C

• Must include mpi.h

• MPI functions return an error code or the success flag MPI_SUCCESS

• Prefix MPI_; only the first letter after MPI or MPI_ is capitalized, the rest are

lowercase

➢ Fortran

• Must include mpif.h

• Call MPI as subroutines; the last argument is the return code

• Prefix MPI_; function names are all uppercase

➢ MPI function parameters are marked as:

• IN：input parameter; not modified by the routine

• OUT：output parameter; may be modified by the routine

• INOUT：used for both directions of data transfer

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

74

02 MPI Basic Functions

◼ MPI Initialization：int MPI_Init(int *argc, char **argv)

➢ This is the first call in an MPI program. It performs all MPI initialization.
The first executable statement of any MPI program is this call.

➢ Starts the MPI environment

◼ MPI Finalization：int MPI_Finalize(void)

➢ This is the last call in an MPI program. It terminates the MPI program and
must be the last executable statement; otherwise, the behavior is
unpredictable.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

75

02 MPI Basic Functions

mpicc -show

Specify the number of
processes

◼ Compiling and Running the “Hello World” Example

➢ MPI exists as a function library. Compiling an MPI program calls the native
compiler plus related settings; these details are encapsulated by the
executable wrapper script mpicc.

➢ Compile:

• Normal program: gcc hello.c -o hello

• MPI program：mpicc hello.c -o hello

➢ Run:

• Normal program：./hello

• MPI program：mpiexec –n 16 ./hello

Output of mpicc –show:
gcc -I/usr/lib/x86_64-
linux-gnu/openmpi/include
-I/usr/lib/x86_64-linux-
gnu/openmpi/include/openmp
i -L/usr/lib/x86_64-linux-
gnu/openmpi/lib -lmpi

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

76

02 MPI Basic Functions

#include "mpi.h"

#include <stdio.h>

main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

}

Hello World!
Hello World!
Hello World!
Hello World!

◼ How is “Hello” executed？

➢ SPMD: Single Program Multiple Data(SPMD)

#include "mpi.h"

#include <stdio.h>

main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

}

#include "mpi.h"

#include <stdio.h>

main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

}

#include "mpi.h"

#include <stdio.h>

main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

}

#include "mpi.h"

#include <stdio.h>

main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

77

02 MPI Basic Functions

#include <stdio.h>
#include "mpi.h"

main(int argc, char *argv[])
{

int myid, numprocs;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
printf(“I am %d of %d\n", myid, numprocs);
MPI_Finalize();

}

◼ Improving the “Hello World” Example

➢ How many processes are used for parallel computation?

➢ Which process am I?

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

78

02 MPI Basic Functions

◼ Process group

➢ A finite, ordered subset of MPI processes.

➢ Each process in the group is assigned a unique rank within the group, used to

identify the process.

➢ Rank ranges from [0, number_of_processes -1]

◼ Communicator

➢ A communicator includes a process group and a communication context, and

describes communication relationships among processes.

➢ Communicators are divided into intra-communicators and inter-

communicators, used for intra-group and inter-group communication

➢ most MPI users only need intra-communicators.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

79

02 MPI Basic Functions

◼ Communicator

➢ The communication context acts like a “super tag” to safely distinguish

different communications and avoid interference.

➢ MPI includes several predefined communicators.

➢ MPI_COMM_WORLD is the set of all MPI processes and is created

automatically after MPI_Init.

➢ MPI_COMM_SELF is a communicator containing only the calling process.

➢ Any MPI communication function must occur within a communicator.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

80

02 MPI Basic Functions

0 1 2 3

4 5 6 7

0 1

2 3

4 5

6 7

When starting an MPI program,
the predefined communicator

MPI_COMM_WORLD is created
automatically.

A communicator can be duplicated.

A communicator does not
need to include all

processes in the system.

Each process in a
communicator has a rank.

The same process may have different ranks in different communicators.

➢ Communicators can be created manually in programs.

➢ Simple applications typically only need the default communicator

MPI_COMM_WORLD.
mpiexec -n 16 ./test

◼ Communicator

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

81

02 MPI Basic Functions

◼ Get the number of processes in a given communicator:

int MPI_Comm_size(MPI_Comm comm, int *size);

◼ Get the process rank:

int MPI_Comm_rank(MPI_Comm comm, int *rank);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

82

02 MPI Basic Functions

◼ Message-Passing “Greetings” Example

Process 0 Process 1 Process 2 Process 3

rank=0 rank=1 rank=2 rank=3

Recv () Send () Send () Send ()

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

83

02 MPI Basic Functions

#include <stdio.h>
#include "mpi.h"
main(int argc, char* argv[])
{

int numprocs, myid, source;
MPI_Status status;
char message[100];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,

&myid);
MPI_Comm_size(MPI_COMM_WORLD,

&numprocs);

if (myid != 0) {
strcpy(message, "Hello World!");
MPI_Send(message,strlen(message)+1,

MPI_CHAR, 0,99, MPI_COMM_WORLD);
}
else {/* myid == 0 */

for(source=1; source<numprocs; source++){
MPI_Recv(message, 100, MPI_CHAR, source,

99, MPI_COMM_WORLD, &status);
printf("%s\n", message);

}
}
MPI_Finalize();

} /* end main */

◼ Message-Passing “Greetings” Example

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

84

02 MPI Basic Functions

◼ Sending a message

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm);

➢ One process sends data to another process (or a group of processes).

➢ Sending a message requires：

⚫ What data to send？

− Buf is the message address，count is the number of elements，datatype is the
element type.

⚫ Who to send to？

− The process with rank dest in communicator comm

⚫ User-defined message tag（tag）

int→ MPI_INT
double→ MPI_DOUBLE
char→ MPI_CHAR

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

85

02 MPI Basic Functions

◼ Receiving a message

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status);

➢ The receiver needs：

• The data type(datatype)、size(count)and destination buffer(buf)

• Receive from which sender? （ the process with rank source in
communicator comm）

• User-defined message tag（tag）

• status is the returned status containing additional information such as the
actual number of elements received

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

86

02 MPI Basic Functions

◼ Message status

➢ The message status (MPI_Status type) stores status information about a

received message, including:

⚫ MPI_SOURCE：rank of the sending process

⚫ MPI_TAG：tag of the received message

⚫ MPI_ERROR：error status

➢ It is the last parameter of MPI_Recv

➢ If no information is needed, use MPI_STATUS_IGNORE

➢ The actual number of received elements can be obtained via:

MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

typedef struct _MPI_Status {
int count;
int cancelled;
int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

} MPI_Status, *PMPI_Status;

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

87

02 MPI Basic Functions

◼ The 6 most basic MPI functions:

➢ MPI_Init(…);

➢ MPI_Comm_size(…);

➢ MPI_Comm_rank(…);

➢ MPI_Send(…);

➢ MPI_Recv(…);

➢ MPI_Finalize();

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

88

Outline for MPI

MPI Introduction01

MPI Basic Functions02

Point-to-Point Communication03

Collective Communication04

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

89

03 Point-to-Point Communication

◼ What is point-to-point communication?

➢ Communication between two MPI processes

➢ The source process sends a message to the destination process

➢ The destination process receives the message

➢ Communication occurs within the same communicator

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

90

03 Point-to-Point Communication

◼ Terminology of MPI Communication Functions

➢ Blocking: the send/receive call waits for completion before returning;
after it returns, the resources used in the call can be reused

➢ Non-blocking: the call can return without waiting for completion, but
that does not mean the resources can be reused immediately

➢ Local: completion of the call does not depend on other processes

➢ Non-local: completion depends on other processes; e.g., a sender
may wait until the receiver has received before returning

➢ Collective: all processes in the group participate

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

91

03 Point-to-Point Communication

◼ Overview of MPI point-to-point functions

➢ MPI provides both blocking and non-blocking mechanisms for point-to-point
communication.

➢ It also supports four communication modes, referring to buffer management
and synchronization between sender and receiver:

⚫ Synchronous mode

⚫ Buffered mode

⚫ Standard mode

⚫ Ready mode

➢ Combining different modes with blocking/non-blocking mechanisms yields a
rich set of point-to-point functions.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

92

03 Point-to-Point Communication

◼ Overview of MPI point-to-point functions

➢ MPI send supports four modes; combined with blocking properties, this yields 8 kinds of
send operations in MPI.

➢ MPI receive has only two kinds: blocking receive and non-blocking receive.

➢ Non-blocking calls returning does not mean the communication is complete; MPI
provides completion tests mainly via MPI_Wait and MPI_Test.

➢ MPI_Sendrecv_replace means sending and receiving use the same buffer.

Communication Mode Blocking Non-blocking

Synchronous MPI_Ssend MPI_Issend

Buffered MPI_Bsend MPI_Ibsend

Ready MPI_Rsend MPI_Irsend

Standard

MPI_Send MPI_Isend

MPI_Recv MPI_Irecv

MPI_Sendrecv

MPI_Sendrecv_replace

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

93

03 Point-to-Point Communication

◼ Blocking vs. Non-blocking

➢ Blocking communication functions：MPI_Send/MPI_Recv

• The process is blocked; when the call returns, the memory used in communication
can be reused.

− For send: the send buffer buf can be reused/modified; modifications do not

affect the data sent to the receiver.

− For receive: the message has been received into buf; data can be read from

it.

• The exact completion semantics depend on system buffering and message size.

• Blocking communication is easy to use but can easily cause deadlocks.

➢ Non-blocking communication functions：MPI_Isend/MPI_Irecv

• The call returns immediately; you must separately test for completion.

• Mainly used to overlap computation and communication to improve performance.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

94

03 Point-to-Point Communication

◼ Blocking Communication

Sending process Receiving process

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

95

03 Point-to-Point Communication

◼ What are buffers in MPI communication?

➢ Variables declared in the application, used as the starting address of buffers in message-
passing statements

➢ A memory area created and managed by the system (varies by implementation/user),
used to temporarily store messages during message passing; also called the system
buffer

➢ A user-allocated memory area used as an intermediate buffer to hold arbitrary
messages that may occur in the application

Process P

A M
Process Q

B

Process P

A M
S

Process Q
B

Process P

A M

T

Process Q
B

System buffer

User-provided buffer

User buffer

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

96

03 Point-to-Point Communication

◼ Standard communication mode

➢ Whether send data is buffered is determined by the MPI implementation, not
by the user program.

• If data is buffered, the send returning correctly does not depend on the
receiver.

• If data is not buffered and is sent directly, the send returns correctly only
after the matching receive is executed and data reception has begun.

➢ Equivalent to “no fixed mode”; the concrete mode is chosen by the
implementation.

➢ OpenMPI uses buffered mode for short messages, and a synchronous-like
mode for long messages.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

97

03 Point-to-Point Communication

◼ Standard communication mode

Process 0 sends the message

Buffer the
message

Do not buffer the
message

Buffering
completed

Send directly

Send
completed

Send completed

Start receiving

Recv completed

Process 1 receives the
message

Do not depend on
the receiver

Depends on the
receiver

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

98

03 Point-to-Point Communication

◼ Writing safe MPI programs

➢ MPI programs can easily deadlock if communication calls are ordered improperly.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr) A
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr) C

ELSE IF(rank .EQ. 1)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr) B
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr) D

END IF

DeadlockUnsafe

Wait

Wait Wait

WaitA

D

B

C

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

99

03 Point-to-Point Communication

◼ Writing safe MPI programs

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr) A
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr) C

ELSE IF(rank .EQ. 1)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr) B
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr) D

END IF

UnsafeSystem buffer

Wait

Wait Wait

Wait

A

C

B

D

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

100

03 Point-to-Point Communication

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr) A
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr) C

ELSE IF(rank .EQ. 1)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr) D
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr) B

END IF

SafeUnsafe

Wait

Wait Wait

Wait

A

D

B

C

◼ Writing safe MPI programs

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

101

03 Point-to-Point Communication

◼ Bundling send and receive

➢ Data rotation

int MPI_Sendrecv(
void * sendbuf, //starting address of send buffer
int sendcount, //number of elements to send
MPI_Datatype sendtype, //datatype of sent data
int dest, //destination process rank
int sendtag, //send message tag
void * recvbuf, //starting address of receive buffer
int recvcount, //maximum number of elements to
receive
MPI_Datatype recvtype, //datatype of received data
int source, //source process rank
int recvtag, //receive message tag
MPI_Comm comm, //communicator
MPI_Status * status //returned status

)

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

102

03 Point-to-Point Communication

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF(rank .EQ. 1)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

RECVCALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN

CALL MPI_SENDRECV(sendbuf, count, MPI_REAL, 1, tag,
+ recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
IF(rank.EQ.1) THEN

CALL MPI_SENDRECV(sendbuf, count, MPI_REAL, 0, tag,
+ recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

◼ Bundling send and receive

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

103

03 Point-to-Point Communication

◼ Non-blocking communication

➢ Comparison with blocking communication

Type Functions Return Semantics Buffer Safety /
Access to Buffers

Characteristics

Block
ing

MPI_Send
MPI_Recv

• Blocking calls do not return until the

specified operation completes.

• Or, they return only after the MPI

library has safely buffered (copied) the

data involved.

After the call
returns, it is safe to
access/modify the
involved buffers

• Program design

is relatively simple.

• Improper use can

easily lead to

deadlock.

Non-
block
ing

MPI_Isend
MPI_Irecv

• Returns immediately; the actual

communication proceeds in the

background (handled by the MPI

implementation).

• You must use additional calls to wait for

or test completion (e.g., wait/test routines).

After the call
returns, it is unsafe
to access/modify
the buffers
involved until
completion

• Enables overlap

of computation and

communication.

• Program design

is relatively complex.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

104

03 Point-to-Point Communication

◼ Non-blocking send

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm, MPI_Request *request)

➢ This function only posts a send request and returns immediately.

➢ The MPI system completes message sending in the background.

➢ The function creates a request object for this send and returns it via request.

➢ request can be used later by query/wait functions.

◼ Non-blocking receive

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Request* request)

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

105

03 Point-to-Point Communication

◼ Using MPI_Wait

int MPI_Wait(MPI_Request* request, MPI_Status * status);

➢ Takes the non-blocking request object request as an argument, blocks until the
corresponding non-blocking communication completes, stores related information in
status, and frees the request object (request = MPI_REQUEST_NULL).

MPI_Request request;
MPI_Status status;
int x,y;
if(rank == 0){

MPI_Isend(&x,1,MPI_INT,1,99,comm,&request)
…
MPI_Wait(&request,&status);

} else {
MPI_Irecv(&y,1,MPI_INT,0,99,comm,&request)
…
MPI_Wait(&request,&status);

}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

106

03 Point-to-Point Communication

◼ Using MPI_Test

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

➢ MPI_Test returns immediately.

➢ If the corresponding non-blocking communication has completed, it sets the
completion flag flag = true; otherwise, it sets flag = false.

MPI_Request request;
MPI_Status status;
int x,y,flag = 0;
if(rank == 0){

MPI_Isend(&x,1,MPI_INT,1,99,comm,&request)
while(!flag)

MPI_Test(&request,&flag,&status);
} else {

MPI_Irecv(&y,1,MPI_INT,0,99,comm,&request)
while(!flag)

MPI_Test(&request,&flag,&status);
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

107

Outline for MPI

MPI Introduction01

MPI Basic Functions02

Point-to-Point Communication03

Collective Communication04

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

108

04 Collective Communication

◼ Collective communication is a global communication operation in which all
processes in a group participate.

◼ Collective communication generally provides three functions: Data movement,
data aggregation, and synchronization

➢ Data movement mainly transfers data within the group.

➢ Data aggregation performs certain operations on the given data based on
communication.

➢ Synchronization ensures all processes in the group reach a consistent
execution point.

◼ By communication direction, collective communication can be divided into: One-
to-many, many-to-one, and many-to-many communication

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

109

04 Collective Communication

◼ Collective communication

functions

◼ All: Deliver the result to all

processes.

◼ V: Variety, with more

flexible data objects and

operations

Category Function Purpose

Data
movement

MPI_Bcast One-to-many, data broadcast

MPI_Gather Many-to-one, data gather

MPI_Gatherv Generalized form of MPI_Gather

MPI_Allgather All-process variant of MPI_Gather (gather result
delivered to all processes)

MPI_Allgatherv Generalized form of MPI_Allgather

MPI_Scatter One-to-many, data scatter

MPI_Scatterv Generalized form of MPI_Scatter

MPI_Alltoall Many-to-many, data permutation (all-to-all exchange)

MPI_Alltoallv Generalized form of MPI_Alltoall

Data
aggregation

MPI_Reduce Many-to-one, data reduction

MPI_Allreduce All-process variant of the above; result available on all
processes

MPI_Reduce_scatt
er

Scatter the reduced result to all processes

MPI_Scan Prefix operation (scan)

Synchroniza
tion

MPI_Barrier Synchronization operation (barrier)

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

110

04 Collective Communication

A

B

D

C

B C D

A

A

A

A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

◼ Data Movement

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

111

04 Collective Communication

A

B

D

C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D

A B C D

A B C D

A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

◼ Data Movement

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

112

04 Collective Communication

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D

C

A

B

D

C

f(ABCD)

f(A)

f(AB)

f(ABC)

f(ABCD)

Reduce

Scan

◼ Data Aggregation

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

113

04 Collective Communication

◼ Broadcast — data broadcast

int MPI_Bcast (void *buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm);

int p, myrank;
float buf;
MPI_Comm comm;
MPI_Init(&argc, &argv);
MPI_Comm_rank(comm, &my_rank);
MPI_Comm_size(comm, &p);
if(myrank==0)

buf = 1.0;
MPI_Bcast(&buf,1,MPI_FLOAT,0, comm);

➢ The process designated as root sends the same

message to all processes in the communicator

comm.

➢ As in point-to-point communication, the message

contents are specified by the triple <buffer,

count, datatype>.

➢ For the root process, this triple defines both the

send buffer and the receive buffer; for all other

processes, it defines only the receive buffer.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

114

04 Collective Communication

◼ Gather — data collection

int MPI_Gather (void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, int

root, MPI_Comm comm);

➢ The root process receives messages from all
processes in communicator comm.

➢ Messages are concatenated in rank order
and stored in the root’s receive buffer.

➢ recvcnt is the number of data elements the
root receives from each process, not the
total number of elements received by the
root.

int p, myrank;
float data[10];
float* buf;
MPI_Comm comm;
MPI_Init(&argc, &argv);
MPI_Comm_rank(comm, &my_rank);
MPI_Comm_size(comm, &p);
if(myrank==0)
buf = (float*)malloc(p*10*sizeof(float);

MPI_Gather(data,10,MPI_FLOAT,
buf,10,MPI_FlOAT,0,comm);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

115

04 Collective Communication

◼ Scatter — data distribution

int MPI_Scatter (void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, int

root, MPI_Comm comm);

➢ Scatter performs the reverse of Gather.

➢ The root process sends a different message to

all processes.

➢ Messages are stored in order of process rank in

the root’s send buffer.

➢ Each receive buffer is denoted by <recvbuf,

recvcnt, recvtype>.

➢ For the root process, the send buffer is

denoted by <sendbuf, sendcnt, sendtype>.

int p, myrank;
float data[10];
float* buf;
MPI_Comm comm;
MPI_Init(&argc, &argv);
MPI_Comm_rank(comm, &my_rank);
MPI_Comm_size(comm, &p);
if(myrank==0)

buf = (float*)malloc(p*10*sizeof(float);
MPI_Scatter(buf,10,MPI_FLOAT,data,10,

MPI_FlOAT,0,comm);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

116

04 Collective Communication

◼ Data Aggregation

➢ Collective data aggregation operations allow MPI processes to perform
certain computations while communicating.

➢ Data aggregation operations proceed in three steps:

⚫ First, communication: messages are sent to target processes as required,
and target processes have received the needed messages.

⚫ Second, message processing: perform the computation.

⚫ Finally, place the processed result into the specified receive buffer

➢ MPI provides two types of aggregation operations: Reduce and Scan.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

117

04 Collective Communication

◼ Reduce — data reduction

int MPI_Reduce (void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root,

MPI_Comm comm);

➢ Data in each process’s send buffer (sendbuf) is
combined with the specified operation, and the
final result is stored in the root process’s receive
buffer (recvbuf).

➢ The data type of the items participating in the
operation is defined by datatype, and the
reduction operation is defined by op.

➢ The reduction operation can be predefined by
MPI or user-defined

➢ Reduction allows each process to contribute a
vector value, not just a scalar; vector length is
defined by count.

int p, myrank;
float data = 0.0;
float buf;
MPI_Comm comm;
MPI_Init(&argc, &argv);
MPI_Comm_rank(comm,&my_rank);
data = data + myrank * 10;
MPI_Reduce(&data,&buf,1,MPI_FLOAT,MPI_
SUM,0,comm);

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

118

04 Collective Communication

◼ Reduce — data reduction

➢ MPI predefined reduction operations

Operation Meaning Operation Meaning

MPI_MAX Maximum MPI_LOR Logical OR

MPI_MIN Minimum MPI_BOR Bitwise OR

MPI_SUM Sum MPI_LXOR Logical XOR

MPI_PROD Product MPI_BXOR Bitwise XOR

MPI_LAND Logical AND MPI_MAXLOC Maximum value and the corresponding location

MPI_BAND Bitwise AND MPI_MINLOC Minimum value and the corresponding location

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

119

04 Collective Communication

◼ Reduce — data reduction

➢ User-defined reduction operation

➢ The user-defined reduction function user_fn performs:

➢ A user-defined reduction operation does not have to be commutative,
but it must be associative.

MPI_OP_CREATE(user_fn, commutes, &op);

MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

for i from 0 to len-1

inoutvec[i] = invec[i] op inoutvec[i];

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

120

04 Collective Communication

➢ Divide the interval into n sub-intervals

➢ Evenly distribute the n sub-intervals among p
MPI processes

➢ Each process computes the sum of areas of
n/p sub-intervals

➢ Sum the p partial sums to obtain Pi

➢ Width of each segment: w = 1/n

➢ x-coordinate of the start of segment i: d(i) = i

* w

➢ Height of the small rectangle for segment i:
sqrt(1 – [d(i)]^2)

 −=
1

0

2
14 dxx  +

=
1

0 2
1

1
4 dx

x


1

1

“n” sub-intervals

◼ Collective communication example: numerical integration to compute Pi

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

121

04 Collective Communication

◼ Collective communication example: numerical integration to compute Pi

#include <mpi.h>
#include <math.h>
int main(int argc, char *argv[])
{

[...snip...]
/* Tell all processes, the number of segments you want */
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
w = 1.0 / (double) n;
mypi = 0.0;
for (i = rank + 1; i <= n; i += size)

mypi += w * sqrt(1 – (((double) i / n) * ((double) i / n));
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
if (rank == 0)

printf("pi is approximately %.16f, Error is %.16f\n", 4 * pi,
fabs((4 * pi) - PI25DT));

[...snip...]
}

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

122

04 Collective Communication

◼ Barrier Synchronization

int MPI_Barrier(MPI_Comm comm);

➢ Blocks the calling process until all processes in communicator comm have
called this function.

➢ When MPI_Barrier returns, all processes are synchronized at the barrier.

➢ MPI_Barrier is implemented in software and may incur significant
overhead on some machines.

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

123

04 Collective Communication

◼ Characteristics of collective communication

➢ All processes in the communicator must call the collective function.

➢ Except for MPI_Barrier, each collective function uses a standard, blocking
communication mode similar to point-to-point communication.

• Once a process finishes its participation in the collective operation, it returns from
the collective call, but it does not guarantee that other processes have completed
the collective call.

➢ Collective communication has no message tag parameter;

➢ The message envelope is defined by the communicator and source/destination.

• For example, in MPI_Bcast, the source is the root process, and the destinations
are all processes (including the root).

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

ASC26 Student Supercomputer Challenge Training Camp

Thanks!

Beijing Normal UniversityJianhua Gao

2026/1/27

 AS
C26
集训
营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 A
SC2
6集
训营

ASC
26集
训营

 AS
C26
集训
营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

 A
SC2
6集
训营

	默认节
	幻灯片 1
	幻灯片 2: Background
	幻灯片 3: Background
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Background

	OpenMP
	幻灯片 7: Outline for OpenMP
	幻灯片 8: Outline for OpenMP
	幻灯片 9: 01 OpenMP Introduction
	幻灯片 10: 01 OpenMP Introduction
	幻灯片 11: 01 OpenMP Introduction
	幻灯片 12: 01 OpenMP Introduction
	幻灯片 13: 01 OpenMP Introduction
	幻灯片 14: 01 OpenMP Introduction
	幻灯片 15: 01 OpenMP Introduction
	幻灯片 16: 01 OpenMP Introduction
	幻灯片 17: Outline for OpenMP
	幻灯片 18: 02 Parallel Region
	幻灯片 19: 02 Parallel Region
	幻灯片 20: Outline for OpenMP
	幻灯片 21: 03 Work Sharing
	幻灯片 22: 03 Work Sharing
	幻灯片 23: 03 Work Sharing——omp for
	幻灯片 24: 03 Work Sharing——omp for
	幻灯片 25: 03 Work Sharing——omp for
	幻灯片 26: 03 Work Sharing——omp for
	幻灯片 27: 03 Work Sharing——omp for
	幻灯片 28: 03 Work Sharing——omp for
	幻灯片 29: 03 Work Sharing——omp sections
	幻灯片 30: 03 Work Sharing——omp sections
	幻灯片 31: 03 Work Sharing——omp sections
	幻灯片 32: 03 Work Sharing——omp sections
	幻灯片 33: 03 Work Sharing——omp task
	幻灯片 34: 03 Work Sharing——omp task
	幻灯片 35: 03 Work Sharing——omp task
	幻灯片 36: Outline for OpenMP
	幻灯片 37: 04 Data Environment
	幻灯片 38: 04 Data Environment
	幻灯片 39: 04 Data Environment
	幻灯片 40: 04 Data Environment
	幻灯片 41: 04 Data Environment
	幻灯片 42: 04 Data Environment
	幻灯片 43: 04 Data Environment
	幻灯片 44: 04 Data Environment
	幻灯片 45: 04 Data Environment
	幻灯片 46: 04 Data Environment
	幻灯片 47: 04 Data Environment
	幻灯片 48: 04 Data Environment
	幻灯片 49: 04 Data Environment
	幻灯片 50: 04 Data Environment
	幻灯片 51: 04 Data Environment
	幻灯片 52: 04 Data Environment
	幻灯片 53: Outline for OpenMP
	幻灯片 54: 05 Synchronization
	幻灯片 55: 05 Synchronization
	幻灯片 56: 05 Synchronization
	幻灯片 57: 05 Synchronization
	幻灯片 58: 05 Synchronization
	幻灯片 59: 05 Synchronization
	幻灯片 60: 05 Synchronization
	幻灯片 61: Outline for OpenMP
	幻灯片 62: 06 Library Routines and Environment Variables
	幻灯片 63: 06 Library Routines and Environment Variables

	MPI
	幻灯片 64: Outline for MPI
	幻灯片 65: Outline for MPI
	幻灯片 66: 01 MPI Introduction
	幻灯片 67: 01 MPI Introduction
	幻灯片 68: 01 MPI Introduction
	幻灯片 69: 01 MPI Introduction
	幻灯片 70: 01 MPI Introduction
	幻灯片 71: Outline for MPI
	幻灯片 72: 02 MPI Basic Functions
	幻灯片 73: 02 MPI Basic Functions
	幻灯片 74: 02 MPI Basic Functions
	幻灯片 75: 02 MPI Basic Functions
	幻灯片 76: 02 MPI Basic Functions
	幻灯片 77: 02 MPI Basic Functions
	幻灯片 78: 02 MPI Basic Functions
	幻灯片 79: 02 MPI Basic Functions
	幻灯片 80: 02 MPI Basic Functions
	幻灯片 81: 02 MPI Basic Functions
	幻灯片 82: 02 MPI Basic Functions
	幻灯片 83: 02 MPI Basic Functions
	幻灯片 84: 02 MPI Basic Functions
	幻灯片 85: 02 MPI Basic Functions
	幻灯片 86: 02 MPI Basic Functions
	幻灯片 87: 02 MPI Basic Functions
	幻灯片 88: Outline for MPI
	幻灯片 89: 03 Point-to-Point Communication
	幻灯片 90: 03 Point-to-Point Communication
	幻灯片 91: 03 Point-to-Point Communication
	幻灯片 92: 03 Point-to-Point Communication
	幻灯片 93: 03 Point-to-Point Communication
	幻灯片 94: 03 Point-to-Point Communication
	幻灯片 95: 03 Point-to-Point Communication
	幻灯片 96: 03 Point-to-Point Communication
	幻灯片 97: 03 Point-to-Point Communication
	幻灯片 98: 03 Point-to-Point Communication
	幻灯片 99: 03 Point-to-Point Communication
	幻灯片 100: 03 Point-to-Point Communication
	幻灯片 101: 03 Point-to-Point Communication
	幻灯片 102: 03 Point-to-Point Communication
	幻灯片 103: 03 Point-to-Point Communication
	幻灯片 104: 03 Point-to-Point Communication
	幻灯片 105: 03 Point-to-Point Communication
	幻灯片 106: 03 Point-to-Point Communication
	幻灯片 107: Outline for MPI
	幻灯片 108: 04 Collective Communication
	幻灯片 109: 04 Collective Communication
	幻灯片 110: 04 Collective Communication
	幻灯片 111: 04 Collective Communication
	幻灯片 112: 04 Collective Communication
	幻灯片 113: 04 Collective Communication
	幻灯片 114: 04 Collective Communication
	幻灯片 115: 04 Collective Communication
	幻灯片 116: 04 Collective Communication
	幻灯片 117: 04 Collective Communication
	幻灯片 118: 04 Collective Communication
	幻灯片 119: 04 Collective Communication
	幻灯片 120: 04 Collective Communication
	幻灯片 121: 04 Collective Communication
	幻灯片 122: 04 Collective Communication
	幻灯片 123: 04 Collective Communication
	幻灯片 124

