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Background

B Computer system (classified from the perspective of storage
models)
» Distributed memory computer systems

 Multiple nodes are connected together through a network, with each
node's processor having its own local memory.

e Compared to shared memory systems, distributed systems offer
excellent scalability.
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01 OpenMP Introduction

B What is OpenMP ?

>
>
>

A parallel programming model designed for shared-memory system
An industry-standard APl for multithreaded programming

Consisting of a set of compiler directives, runtime library routines,
and environment variables

Facilitating multithreaded programming in Fortran, C, and C++

Offering simplicity in programming, good portability, and excellent
scalability

OpenMP www.openmp.org




01 OpenMP Introduction

B Parallel Execution Model
» OpenMP is a thread-based parallel programming model
» It adopts the Fork-Join parallel execution model

» Utilizing thread pool technology, where multiple threads are initiated

once the program starts.
join

l fork

Master
thread

A

10

Parallel execution region




01 OpenMP Introduction

B OpenMP Example in C

#include <omp.h> ® Compiler directive: #pragma omp
#include <stdio.h>

int main() { ® Header file: omp.h

int nthreads,tid;

#pragma omp parallel private(nthreads,tid)
{

tid=omp_get thread _num();

printf("Hello, world from OpenMP thread %d\n", tid);
if (tid==0) {

nthreads=omp_get num_threads();

printf(" Number of threads %d\n", nthreads);

}
} ® Compile
return [@; gcc -fopenmp hello.c
} icc -openmp hello.c




01 OpenMP Introduction

B OpenMP Example in C

#include <omp.h> Compiler directive: #pragma omp

#include <stdio.h> .
int main() { Header f11e:_ omp.h

int nthreads,tid;
#pragma omp parallel private(nthreads,tid)
{
tid=omp_get thread num();
printf("Hello, world from OpenMP thread %d\n", tid);
if (tid==0) {
nthreads=omp_get num_threads();
printf(" Number of threads %d\n", nthreads);

Hello World from OpenMP thread 2
Hello World from OpenMP thread @
Number of threads 4

Hello World from OpenMP thread 3
Hello World from OpenMP thread 1




01 OpenMP Introduction

B OpenMP Example in Fortran

program hello

use omp_1lib . .
implicit none ® Module: omp 1lib

® Compiler directive: ! $omp

integer :: tid, nthreads

I$omp parallel private(tid)
tid = omp_get thread num()
write(*,100) "Hello, world from OpenMP thread ", tid
if (tid==0) then
nthreads=omp_get num_threads();

write(*,100) "Number of threads ", nthreads
endif

I$omp end parallel ® Compile

100 format(1X,A,I1,/) gfortran -fopenmp hello.f90
end ifort -openmp hello.f90




01 OpenMP Introduction

B Compiler Directives

» OpenMP achieves parallelization by adding compiler directives to
serial programs.

» Compiler directives consist of three parts: a directive prefix, a
directive itself, and clauses, with the general format:

H#pragma omp

directive-name

[clause, ...]

Such a prefix is
required for all
directives.

Directive Prefix.

Directive. A valid directive
must appear between the
directive prefix and its
clauses.

Clauses. In the absence of
other constraints, clauses
can be unordered. This part
may also be omitted entirely.

14




01 OpenMP Introduction

B Compiler Directives can be broadly categorized into four types

» Parallel Region Directive

 Generates a parallel region, i.e., creates multiple threads to execute tasks in
parallel.

e All parallel tasks must be placed within a parallel region to be potentially executed
in parallel.

» Work-Sharing Directive

* Responsible for dividing tasks and distributing them among threads.
*  Work-sharing directives do not create new threads and must therefore be placed
inside a parallel region.

» Synchronization Directive
* Handles synchronization between parallel threads.
» Data Environment

 Manages the attributes (shared or private) of variables within a parallel region, as
well as data transfer between boundaries (serial regions and parallel regions). s



01 OpenMP Introduction

B Most OpenMP compiler directives apply to the structured block that
follows them

» A structured block is a block of statements with only one entry point (at the
top) and one exit point (at the bottom), with no branches that jump outside
the block.

» Exception: Fortran's STOP statement and C/C++’s exit() are allowed within a
structured block.

if (go_now()) goto more;
#pragma omp parallel
#pragma omp parallel {
{ int id = omp_get thread num();
int id = omp_get_thread_num(); more: res[id] = do_big job(id);
more: res[id] = do_big job (id); if (conv (res[id]) goto done;
if (conv (res[id]) goto more; goto more;
} }
printf (“All done\n”); done: if (!really done()) goto more;
A structured block Not a structured block

One entry point, one exit point Two entry points, one exit point
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02 Parallel Region

B Code inside a parallel region will be executed in parallel by multiple
threads.

B At the end of the parallel region, there is an implicit synchronization
(barrier).

B Clauses are used to specify additional information for the parallel region.
If there are multiple clauses, they are separated by spaces.

B Specific format:

#pragma omp parallel [clause[[,]clause]...]
clause=

if (scalar_expression)

private (list)

!Somp parallel [clause clause ...]

Fortran structured-block
shared (list) !Somp end parallel
default (shared | none)
firstprivate (list) #pragma omp parallel [clause clause ...]
reduction (operator: list) C/C++

structured-block

copyin (list) )




02 Parallel Region

B OpenMP Example in C

#include <omp.h>
#include <stdio.h>
int main() {
int nthreads,tid;
#pragma omp parallel default(shared) private(nthreads,tid)
{
tid=omp_get thread num();
printf("Hello, world from OpenMP thread %d\n", tid);
if (tid==0) {
nthreads=omp_get num_threads();
printf(" Number of threads %d\n", nthreads);

}
}

return 0;

}

19
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03 Work Sharing

B OpenMP uses work-sharing compiler directives to divide and assign
tasks to multiple threads for parallel execution

B Work-sharing directives are mainly divided into three categories:
» omp for: Responsible for partitioning and distributing loop tasks.

» omp sections: Specifies a parallel region containing multiple
structured blocks that can be executed in parallel.

» omp task: Explicitly defines a task, which is then placed into a task
queue to await execution.

21



03 Work Sharing

B When using work-sharing directives, the following points should be
noted:

» Work-sharing directives are not responsible for creating or managing
parallel regions; they must be used within a #pragma omp
parallel region.

» |If a work-sharing directive region is not placed inside a parallel region,
it will only be executed serially by a single thread.

» An implicit barrier synchronization exists at the end of the work-
sharing region (this can be avoided by using the nowait clause).

22



03 Work Sharing——omp for

B omp for directive

» Each thread is assigned a set of loop l
iterations, and there are no
dependencies between the iterations. #pragna omp parallel >

~~ T ——
#pragma omp for

» There is an implicit synchronization
barrier at the end of the loop execution.

W N & U

// assume N=12
#pragma omp parallel
#pragma omp for < lmplicit barrier
for(i = 1, 1 < N+1, i++)
c[i] = a[i] + b[i];

23



03 Work Sharing——omp for

B The for directive specifies that the following loop is executed in parallel
by threads in the thread pool.

B Specific format:

#pragma omp for [clause[[,]clause]...]

[clause]=

Schedule(type [,chunk]) :
ordered !Somp do [clause clause ...]
private (list) Fortran | do-loops
firstprivate (list)
lastprivate (list) 'Somp end do
shared (list)
reduction (operator: list) #pragma omp for [clause clause ...]
nowait {

C/C++ for-loops

}

24



03 Work Sharing——omp for

B The parallel region and the work-sharing construct can be combined into
a single compiler directive.

#pragma omp parallel

{ #pragma omp parallel for

#pragma omp for . . .

L3 L3 L] f =e g < MAX S

for (1=Q;1< MAX; i++) { or (iesii] ~ ha Zz;? {
res[i] = huge(); ) = huge();

}

25



03 Work Sharing——omp for

M schedule clause

» The schedule clause describes how loop iterations are divided among the
threads in the thread team.

» Syntax: schedule(type/, size])
° [lype: specifies the scheduling strategy.

* size: specifies the chunk size (the number of loop iterations) and must be an
integer.

» Scheduling strategy types
* static: Static scheduling; the chunk size is fixed and specified by size.
* dynamic: Dynamic scheduling; the chunk size is fixed and specified by size.

* guided: Dynamic scheduling; the chunk size decreases over time, with the
minimum chunk size specified by size.

* runtime: The scheduling strategy is determined at runtime.

26



03 Work Sharing——omp for

B schedule(static, size)

» Omitting size: The iteration space is divided into chunks of equal (or near-

equal) size, with each thread assigned one chunk.

» Specifying size: The iteration space is divided into chunks of a specified size,

which are then assigned to threads in a round-robin fashion.

Example: Given 4 threads and a total of 40 iterations:

schudule(static)

schudule(static, 4)

TO

T1

T2

T3

TO

T1

T2

T3

TO

T1

T2

T3

TO | T1

27



03 Work Sharing——omp for

B schedule(dynamic, size)

» The iteration space is divided into chunks of a specified size, which are then
assigned to threads on a first-come, first-served basis.

» When size is omitted, the default value is 1.
B schedule(guided, size)

» Similar to dynamic scheduling, but the size of assigned chunks starts large and
decreases over time, using the GSS (Guided Self-Scheduling) algorithm.

» Size specifies the minimum chunk size; when size is omitted, the default value
is 1.

W schedule(runtime) | export OMP_SCHEDULE=DYNAMIC, 4;

» The scheduling policy depends on the value of the OMP SCHEDULE
environment variable.

» ltisillegal to specify a size when using runtime.
28



03 Work Sharing——omp sections

B Code between two #pragma omp section directives is called a section.

B Any number of sections can be defined, and they are assigned to multiple threads
for concurrent execution.

B Each section is executed exactly once by only one thread.

B [f the number of threads exceeds the number of sections, each thread executes at
most one section.

B If the number of threads is fewer than the number of sections, each thread may
execute more than one section.

#pragma omp sections clausel clause2 ...
{

#pragma omp section

Structured block

#pragma omp section

Structured block




03 Work Sharing——omp sections

B omp sections example

#pragma omp parallel sections

{

#pragma omp section
phasel();
#pragma omp section
phase2();
#pragma omp section
phase3();

Serial

Parallel

30



03 Work Sharing——omp sections

B Functional Parallelism Example

#pragma omp parallel sections @ @

N

{
#pragma omp section /*Removable*/ @ Q
a = alice();

#pragma omp section

bigb
b = bob(); igboss
#pragma omp section
) ¢ =cy(); | a = alice();
b = bob();
s = boss(a, b); ! < = bgséza b);
intf ("%6.2f\n", bigb ,));3 LT
prin S-- \n igboss(s g)) ¢ = cy();
printf ("%6.2f\n",
bigboss(s,c));




03 Work Sharing——omp sections

B Functional Parallelism Example

#pragma omp parallel sections @ @
{

#pragma omp section /*Removable*/ \ /
a = alice(); @ a
#pragma omp section

} b = bOb(); bigboss
#pragma omp parallel sections
{ _ 14 :
#pragma omp section /*Removable*/ z ; ziézif)’

¢ = cy(); J : s = boss(a, b);
#pragma omp section )

s = boss(a, b); ¢ = cy();

? ? printf ("%6.2f\n",

) bigboss(s,c));
printf ("%6.2f\n", bigboss(s,c)); > /2




03 Work Sharing——omp task

B New Features in OpenMP 3.0

B Ideal for irregular parallelism:

» Loops with undetermined boundaries

» Recursive algorithms

» Producer/Consumer patterns

B #pragma omp task explicitly defines a task.

» Ataskis an independent unit of work that may be
executed immediately by the encountering thread, or
deferred to other threads in the thread pool.

» Task execution depends on the OpenMP Task
Scheduler at runtime.

» The difference between rask and for/sections: task
defines work "dynamically." Serial Parallel

33



03 Work Sharing——omp task

4
#pragma omp parallel num_threads(8)

{
#pragma omp single private(p)
{

L

#pragma omp task
{ \

processwork(p);
}

} e—

A thread pool of 8 threads is created.

The code block specified by the
single directive is executed by only
one thread (the first one to reach
it).

The thread executing the single
block continuously generates tasks,
which are then assigned to idle
threads in the thread pool by the
runtime system.

}

All threads synchronize at the end
of the single code block.




03 Work Sharing——omp task

Single
Thread

Thrl Thr2 Thr3 Thr4

#pragma omp parallel
{
#pragma omp single
{ // block 1
node * p = head;
while (p) { o//block 2
#pragma omp task
process(p);
p = p->next; //block 3
}

> Time Saved

—v— J 35
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04 Data Environment

Data Scoping: Which variables are shared across multiple threads, and
which are private?

OpenMP is a parallel programming model for shared-memory systems;
threads communicate via shared variables.

Shared Variables:
» C/C++: Global variables (file or namespace scope), static variables, constants, etc.
» Fortran: COMMON blocks, SAVE variables, MODULE variables, etc.

Private Variables:
» Variables declared inside a parallel region (explicitly private).
» Variables explicitly declared using the private clause.
» Loop iteration variables.
>

Variables on the stack of functions called within a parallel region (local variables defined
inside functions).

37



04 Data Environment

B Data Race Issues
» The following loop cannot
execute correctly.

#pragma omp parallel for

for(k=0;k<100;k++) {
x=array[k];
array[k]=do_work(x);

}

» The correct approach:

* Declare as a private variable directly.

#pragma omp parallel for private(x)
for(k=0;k<100;k++) {

x=array[k];

array[k]=do_work(x);

}

* Declare variables inside the parallel region;
such variables are inherently private.
#pragma omp parallel for

for(k=0;k<100;k++) {
int x;
x=array[k];
array[k]=do_work(x);
} 38



04 Data Environment

B Two ways to control the data environment during parallel execution:
» Independent OpenMP directives.
* #ipragma omp threadprivate(list)
» Data-sharing attribute clauses of OpenMP directives.
* private
* shared
* default
* firstprivate
* lastprivate
* copyin

* reduction



04 Data Environment

B threadprivate Directive

» Used to declare a global or static variable as private to each thread (rather
than private to a specific parallel region). For example, a Thread ID that
retains the same value across multiple parallel regions.

» The directive must immediately follow the variable declaration.

int A(100), B;
double C;
#pragma omp threadprivate(A, B, C)

> Execution Mechanism:

When the program first enters a parallel
region, each thread creates a copy of the
variable marked as threadprivate.

The initial value of each copy is
unpredictable (random memory address,
uninitialized).

int a;
#pragma omp threadprivate(a)
#pragma omp parallel

{
a = OMP_get_thread_num();

}
#pragma omp parallel

{
}

printf(“a=%d\n”,a);

40




04 Data Environment

#include <stdio.h>

#include <omp.h>

int global var = 20;

#pragma omp threadprivate(global var)

int main() {
#pragma omp parallel num_threads(4)
{
int thread_id = omp_get_thread_num();
global var = global_var + thread_id + 1;
printf("In parallel 1 (Thread %d): global var = %d\n", thread_id,
global var);

}
#pragma omp parallel num_threads(4)

{
int thread_id = omp_get thread_num();
printf("before: In parallel 2 (Thread %d): global_var = %d\n",
thread_id, global_var);
global _var = global_var + thread_id + 1;
printf("after: In parallel 2 (Thread %d): global var = %d\n",
thread_id, global var);

}

[/ FITXEEREEREENE

printf("After parallel: global var = %d\n", global _var);
return 9;

41



04 Data Environment

#include <stdio.h>
#include <omp.h>
int global var = 20;

#pragma omp threadprivate(global var)

int main() {

#pragma omp parallel num_threads(4)

{

int thread_id = omp_get_thread_num
global var + thread_i
printf("In parallel 1 (Thread %d):

global_var =

global var);
}

#pragma omp parallel num_threads(4)

{

int thread_id = omp_get_thread_num

printf("before: In parallel 2 (Thr
thread_id, global var);

global var =

}
[/ FITXEEREEREENE
printf("After parallel: global var

return 9;

global _var + thread_i
printf("after: In parallel 2 (Thre After parallel: global var
thread_id, global var);

Execution output:

In parallel 1 (Thread 0):
In parallel 1 (Thread 2):
In parallel 1 (Thread 1):
In parallel 1 (Thread 3):

global var
global var
global var
global var = 24

21
23
22

before: In parallel 2 (Thread ©): global var = 21
before: In parallel 2 (Thread 2): global var = 23
after: In parallel 2 (Thread 2): global var = 26
after: In parallel 2 (Thread 9): global var = 22
before: In parallel 2 (Thread 1): global var = 22
after: In parallel 2 (Thread 1): global var = 24
before: In parallel 2 (Thread 3): global var = 24
after: In parallel 2 (Thread 3): global var = 28

%d\n", global var);

42



04 Data Environment

B copyin Clause

» The copyin clause copies the value of a threadprivate variable from the
master thread to the corresponding variables in each thread within the
parallel region.

» Arguments in the copyin clause must be declared as threadprivate.
» Syntax: copyin(list)

43



04 Data Environment

#include <stdio.h>

#include <omp.h>

int global var = 20;

#pragma omp threadprivate(global var)

int main() {
#pragma omp parallel num_threads(4)
{
int thread_id = omp_get_thread_num();
global var = global_var + thread_id + 1;
printf("In parallel 1 (Thread %d): global var = %d\n", thread_id,
global var);

}
#pragma omp parallel num_threads(4) copyin(global_var)

{
int thread_id = omp_get thread_num();

printf("before: In parallel 2 (Thread %d): global var = %d\n",
thread_id, global var);

global _var = global_var + thread_id + 1;

printf("after: In parallel 2 (Thread %d): global var = %d\n",
thread_id, global var);

}

[/ FITXEEREEREENE

printf("After parallel: global var = %d\n", global var);
return 9;



04 Data Environment

#include <stdio.h>

#include <omp.h>

int global var = 20;

#pragma omp threadprivate(global var)

int main() {
#pragma omp parallel num_threads(4)
{
int thread_id = omp_get_thread_num
global_var = global_var + thread_i
printf("In parallel 1 (Thread %d):
global var);
}

#pragma omp parallel num_threads(4) co

{

int thread_id = omp_get_thread_num

printf("before: In parallel 2 (Thr
thread_id, global var);

global var = global var + thread i

Execution output:

In parallel 1 (Thread 0):
In parallel 1 (Thread 1):
In parallel 1 (Thread 3):
In parallel 1 (Thread 2):
before: In parallel 2 (Thread 3): global var
after: In parallel 2 (Thread 3): global var
before: In parallel 2 (Thread 1): global var
after: In parallel 2 (Thread 1): global var
before: In parallel 2 (Thread 2): global var
after: In parallel 2 (Thread 2): global var
before: In parallel 2 (Thread ©): global var
after: In parallel 2 (Thread 0): global var
After parallel: global var

printf("after: In parallel 2 (Thredu ru): giovdi_vdr =

thread_id, global var);

}
/] FITXEBEREETEENE

printf("After parallel: global var = %d\n", global var);

return 9;

global var = 21
global var = 22
global var = 24

global var = 23

= 22



04 Data Environment

B private clause

» The private clause specifies that
the variables in its list are local to
each thread within the parallel
region.

A\

Syntax: private(list)

A\

private variables are "undefined"
upon entering and exiting the
parallel region. This means there is
no association between the private
variable inside the parallel region
and the variable with the same
name outside the region.

int main(int argc, _TCHAR* argv[]){
int A=100,B,C=0;
#pragma omp parallel for private(A,B)
for(int i = 0; i<10;i++){
B=A+1i; // "A" is uninitialized;
Error.!
printf("%d\n",1i);
}

C = B; // "B" is uninitialized; Error.!
printf("A:%d\n", A);
printf("B:%d\n", B);

return 0;

46




04 Data Environment

#include <stdio.h>
#include <omp.h>
int main() {
int var = 1;
#pragma omp parallel private(var) num_threads(4)

{
int thread_id = omp_get thread _num();
var = thread_id + 1;
printf("In parallel 1 (Thread %d): var = %d\n", thread_id, var);
}
#pragma omp parallel private(var) num_threads(4)
{

int thread_id = omp_get thread _num();

printf("Before: In parallel 2 (Thread %d): var = %d\n", thread id, var);
var = var + thread id + 1;

printf("After: In parallel 2 (Thread %d): var = %d\n", thread id, var);

}
/] FTXESEREEREENE

printf("After parallel: var = %d\n", var);
return 0;

47



04 Data Environment

#include <stdio.h>
#include <omp.h>
int main() {

int var = 1; Execution output:
#pragma omp parallel private(var In parallel 1 (Thread 3): var = 4
{ In parallel 1 (Thread 0): var =1
int thread_id = omp_get_thre In parallel 1 (Thread 2): var = 3
var = thread_id + 1; In parallel 1 (Thread 1): var = 2
printf("In parallel 1 (Threa Before: In parallel 2 (Thread 3): var = @
} After: In parallel 2 (Thread 3): var = 4
#pragma omp parallel private(var gefore: In parallel 2 (Thread 1): var = ©
{ After: In parallel 2 (Thread 1): var = 2

inF thrﬁad_id K omp_get_thre gafope: 1In parallel 2 (Thread 2): var = 0@
prlnEF( Befozﬁ. Ig Pjrall?l After: In parallel 2 (Thread 2): var = 3

var EFX?ZF: .Pia 1 Illi 5 Before: In parallel 2 (Thread ©): var = 32661
prin ' adlll [Seaka After: In parallel 2 (Thread 0): var = 32662

} :

/) FAREGRERREEwE  ATter parallel: var =1
printf("After parallel: var = %d\n", var);

return 0;
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04 Data Environment

W firstprivate Clause

» firstprivate variables are initialized upon entering the parallel region using the
value of the variable from outside the region.

» Syntax: firstprivate(list)

W Jastprivate Clause

» If a private variable inside the parallel region needs to pass its calculated value
back to the variable with the same name outside the region upon exit,
lastprivate can be used.

» Syntax: lastprivate(list)

» The value from the last logical iteration of a loop is assigned to the variable
outside the parallel region. int A = 100,

#pragma omp parallel for lastprivate(A)
for(int i = 0; i<10;i++){
A =10 + i;

}
printf("%d\n",A);




04 Data Environment

B shared Clause

» The shared clause declares that variables are shared among multiple threads, meaning
the variables inside and outside the parallel region point to the same memory location.
Consequently, one must be cautious of data races.

» Syntax: shared(list)

int sum = 9;
#pragma omp parallel for shared(sum)
for(int i = @; i < COUNT; i++){

sum = sum + i;

}
B default Clause printf("%d\n",sum);

» Specifies the default data-sharing attributes for variables within a parallel region.
» Syntax: default(shared | none)

» default(shared): Variables within the parallel region default to shared if not explicitly
declared as private.

» default(none): Forces the explicit declaration of data-sharing attributes for all variables;
otherwise, a compilation error will occur.

50



04 Data Environment

B reduction Clause

» specifies an operator for a variable. Each thread creates a private copy of the
reduction variable. At the end of the parallel region, the values of these
private copies are combined according to the specified operator, and the final
result is assigned to the original variable.

» Common Reduction Operators and Initial Values:+(0),-
(0),*(1),~(0),&(~0),(0),&&(1),] [ (0)

» Syntax: reduction(operator:list)

int sum = 0;
#pragma omp parallel for reduction(+:sum)
for(int i = @; 1 < COUNT; i++){

sum = sum + 1i;

}
printf("%d\n",sum);

51



04 Data Environment

B Numerical Integration Method to Calculate Pi

static long num_steps=100000;
double step, pi;

void main()
{ int i;
double x, sum = 0.0;

step = 1.09/(double) num_steps;
#pragma omp parallel for \
private(i, x) reduction(+:sum)
for (i=0@; i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0 + x*x);
}
pi = step * sum;
printf(“Pi = %f\n”,pi);

52
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05 Synchronization

B OpenMP Directives for Thread Synchronization

»single »atomic
> master »ordered
> critical

> barrier

54



05 Synchronization

B master Directive

» Specifies that a structured block is executed only by the master thread; other
threads skip the block and continue execution. It is commonly used for 1/0
operations.

» There is no implicit barrier at the end of the block.

» Syntax: #pragma omp master [clauses]

#pragma omp parallel { #pragma omp parallel {
DoManyThings(); DoManyThings();
#pragma omp master { #pragma omp single {
sk ( ExchangeBoundaries();
ExchangeBoundaries(); }
} Py
DoManyMoreThings(); DoManyMoreThings();

}
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05 Synchronization

B critical Directive

>

A\

Specifies that a structured block can only be executed by one thread at a time.
Other threads are blocked outside the critical section. It is used to protect
modifications to shared variables and avoid data races.

If the name is omitted, the name is assumed to be null.

When using named critical sections, an application can have multiple distinct
critical sections. Generally, all critical sections should be named.

Syntax: #pragma omp critical [(name)]

float RES;
#pragma omp parallel
{ float B;
#pragma omp for
for(int i=0; i<niters; i++){
B = big_job(i);
#pragma omp critical (RES_lock)
consum (B, RES);
} 56
}



05 Synchronization

B barrier Directive

>
>

>

The barrier directive is used to synchronize all threads within a thread team.

Threads that arrive first are blocked here, waiting for the remaining threads to
catch up.

An implicit barrier exists at the end of parallel, for, sections, and single
structured blocks.

The implicit barrier at the end of for, sections, and single blocks can be
removed using the nowait clause.

Deadlock Warning: Either all threads must encounter the barrier, or no
threads should encounter it; otherwise, a deadlock will occur.

Syntax: #pragma omp barrier #pragma omp parallel shared (A, B, C)
{

DoSomeWork(A,B);

printf(“Processed A into B\n”);
#pragma omp barrier

DoSomeWork(B,C);

printf(“Processed B into C\n”); .
}



05 Synchronization

M atomic Directive
» Specifies that a specific memory location will be updated atomically.
» Syntax:
#pragma omp atomic

Statement
» Supported statement formats for aromic:

x binop = expr
xX++

++x

X=-

--X

x is a scalar

expr is a scalar expression that does not reference x and is not overloaded
binopisoneof +, * - / &, |, >>, or <<, and is not overloaded.
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05 Synchronization

B agromic Directive

» The atomic directive allows parallel updates to different array elements,
whereas the critical directive serializes all updates to the array.

» To avoid data races during shared memory updates, afomic should be
prioritized over critical sections whenever possible.

#pragma omp parallel for shared(x, y, index, n)
for (i = 0; 1 < n; i++) {
#pragma omp atomic
x[index[i]] += workl(i);
y[i] += work2(i);
}
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05 Synchronization

B ordered Directive

» Specifies that the structured block within a parallel loop must be executed in
the sequential order of the loop iterations. Only one thread can execute the

ordered section at any given time, following the logical order of the loop
index.

» It can only appear within the dynamic extent of a parallel for construct.
» Syntax: #pragma omp ordered

vector<int> v;
#pragma omp parallel for ordered

for (int i = 0; 1 < n; ++i){
#pragma omp ordered
v.push_back(i);

}
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06 Library Routines and Environment Variables

B OpenMP Runtime Library Routines
» Set/Get the number of threads or thread ID.
 omp_get num_threads()/omp_set_num_threads( )
e omp_get thread num()
« omp_get _max_threads( )
» Determine if the code is currently executing within a parallel region.
e omp_in_parallel()

» Obtain the number of processor cores available in the system.

¢ omp_get_num_procs( ) double start = omp_get wtime();

#pragma omp parallel

{

o on1p_get_yvﬁrne() } ... //work to be timed

double end = omp get wtime();
//Get wall-clock time in seconds.

» Program timing (Wall-clock time).

double time = end - start;




06 Library Routines and Environment Variables

B Environment Variables

» OMP_NUM_THREADS: Sets the maximum number of threads to use.
* setenv OMP_NUM THREADS 4 // Windows (CMD/PowerShell style)
e export OMP_NUM_ THREADS=4 // Linux/Unix (Bash style)

» OMP_SCHEDULE: Sets the scheduling type for DO (Fortran) or for (C/C++)
loops.

* setenv OMP_SCHEDULE "DYNAMIC, 4"

» OMP_DYNAMIC: Determines whether the number of threads used for a

parallel region can be adjusted dynamically. The value is either TRUE or FALSE
(Default: TRUE).

» OMP_NESTED: Determines whether nested parallelism is enabled (Default:
FALSE).
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01 MPI Introduction

B Message-Passing Programming Model

B Processes have independent address spaces; processes communicate via MPI
(Message Passing Interface).

B Inter-process communication includes:
» Synchronization

» Data communication (data is transferred from one process’s address space to another
process’s address space)

MPI

g
»

Process Process

<«

MPI
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01 MPI Introduction

B Message-Passing Programming Model
» Communication between processes is achieved by sending and receiving messages.
» A message is an encapsulation of data.

» Example: parallel sorting

Process1 I

Process1 ' \ Process2

O(N/2 log N/2) / O(N/2 log N/2)

Process1
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01 MPI Introduction

B Whatis MPI?

» It is a functional library specification, not a programming language; operations are
invoked like library calls.

» It is a standard and specification, not a specific implementation, and is language-
independent.

» It is a message-passing programming model, and has become the representative and de
facto standard for this model.

VOI Uil

The Complete Reference: The Complete Reference:

The MPI-1 Core The MPI-2 Extensions
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01 MPI Introduction

B History of MPI ( www.mpi-forum.org )
» MPI-1: 1994

* Supports classical message-passing programming (point-to-point communication,
collective communication, etc.)

*  MPICH: the most popular open-source MPI implementation, jointly developed by
Argonne National Laboratory and Mississippi State University

» MPI-2:1997

 Dynamic process management, parallel I/O, remote memory access, support for
F90 and C++

MPI-3: 2012
MPI-4: 2021

MPI-5: 2025
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01 MPI Introduction

B Why use MPI?

» Standardization : MPIl has become the standard for parallel programming on
distributed-memory systems

» Portability : applications can be ported across MPI-supported platforms without
modifying source code.

» Performance optimization : vendors’ MPIl implementations can exploit hardware
characteristics for optimization.

» Functionality: the MPI standard defines rich functionality.

» Availability: there are multiple open-source and commercial implementations.

* Major open-source implementations include MPICH and Open MPI.
* Industry implementations based on MPICH include:
* Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH, MPICH-
MX
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02 MPI Basic Functions

B “Hello World” Example

Hello world(C)

#include <stdio.h>
#include "mpi.h"

main( int argc, char *argv[] )

{
MPI_Init( &argc, &argv );
printf( "Hello, world!\n" );
MPI_Finalize();

}

Hello world(Fortran)

program main
include 'mpif.h'
integer ierr

call MPL_INIT( ierr)
print *, 'Hello, world!'
call MPI_FINALIZE( ierr)
end
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02 MPI Basic Functions

B MPI Function Conventions in C and Fortran

» C
*  Mustinclude mpi.h
*  MPI functions return an error code or the success flag MPI SUCCESS
* Prefix MPI_; only the first letter after MPI or MPI_ is capitalized, the rest are

lowercase

» Fortran
*  Must include mpif.h
e Call MPI as subroutines; the last argument is the return code
*  Prefix MPI_; function names are all uppercase

» MPI function parameters are marked as:
* IN: input parameter; not modified by the routine
* OUT: output parameter; may be modified by the routine

e INOUT: used for both directions of data transfer
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02 MPI Basic Functions

B MPI Initialization: int MPI Init(int *argc, char **argv)

» This is the first call in an MPI program. It performs all MPI initialization.
The first executable statement of any MPI program is this call.

> Starts the MPI environment

B MPI Finalization: int MPI Finalize(void)

» This is the last call in an MPI program. It terminates the MPI program and
must be the last executable statement; otherwise, the behavior is
unpredictable.
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02 MPI Basic Functions

B Compiling and Running the “Hello World” Example

>

MPI exists as a function library. Compiling an MPI program calls the native
compiler plus related settings; these details are encapsulated by the
executable wrapper script mpicc.

Compile:
* Normal program: gcc hello.c -0 hello

* MPI program: mpicc hello.c -o hello Output of mpicc —show:
gcc -I/usr/lib/x86_ 64-

Run: linux-gnu/openmpi/include
-I/usr/1ib/x86 64-1inux-
gnu/openmpi/include/openmp
i -L/usr/l1lib/x86 64-1inux-
gnu/openmpi/lib -1lmpi

 Normal program: ./hello

* MPI program: mpiexec —n 16 ./hello

Specify the number of

75
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02 MPI Basic Functions fﬁnu

B How is “Hello” executed?

» SPMD: Single Program Multiple Data(SPMD)

Hello World!
Hello World!
Hello World!
Hello World!
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02 MPI Basic Functions

B Improving the “Hello World” Example
» How many processes are used for parallel computation?

» Which process am I?

#include <stdio.h>
#include "mpi.h"

main( int argc, char *argv[] )

{
int myid, numprocs;
MPI Init( &argc, &argv );
MPI Comm rank( MPI_COMM _WORLD, &myid );
MPI Comm_size( MPI_COMM _WORLD, &numprocs );
printf(“I am %d of %d\n", myid, numprocs );
MPI Finalize();
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02 MPI Basic Functions

B Process group

>
>

>

A finite, ordered subset of MPI processes.

Each process in the group is assigned a unique rank within the group, used to
identify the process.

Rank ranges from [0, number of processes -1]

B Communicator

>

>

A communicator includes a process group and a communication context, and
describes communication relationships among processes.

Communicators are divided into intra-communicators and inter-

communicators, used for intra-group and inter-group communication

most MPI users only need intra-communicators.
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02 MPI Basic Functions

B Communicator

» The communication context acts like a “super tag” to safely distinguish
different communications and avoid interference.

» MPIl includes several predefined communicators.

» MPI_COMM_WORLD is the set of all MPI processes and is created
automatically after MPI_Init.

» MPI_COMM_SELF is a communicator containing only the calling process.

» Any MPI communication function must occur within a communicator.
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02 MPI Basic Functions

B Communicator

» Communicators can be created manually in programs.
» Simple applications typically only need the default communicator

MPI_COMM_WORLD.
mpiexec -n 16 ./test

A communicator does not ‘ @ @ When starting an MPI program,

need to include all the predefined communicator

processes in the system. MPI_COMM_WORLD is created
e @ @ e automatically.
Each processin a ° @ @ 6

communicator has a rank. A communicator can be duplicated.

000

The same process may have different ranks in different communicators. 80




02 MPI Basic Functions

B Get the number of processes in a given communicator:

int MPI Comm_size(MPI Comm comm, int *size);

B Get the process rank:

int MPI Comm_rank(MPI_Comm comm, int *rank);
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02 MPI Basic Functions

B Message-Passing “Greetings” Example

Process O Process 1 Process 2

rank=0 rank=1 rank=2

Process 3

rank=3
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02 MPI Basic Functions

B Message-Passing “Greetings” Example

#include <stdio.h>
#include "mpi.h"
main(int argc, char* argv[])
{
int numprocs, myid, source;
MPI Status status;
char message[100];

MPI_Init(&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD,
&myid);

MPI_Comm_size(MPI_COMM_WORLD,
&numprocs);

if (myid !'= @) {
strcpy(message, "Hello World!");
MPI_Send(message,strlen(message)+1,
MPI_CHAR, 0,99, MPI_COMM_WORLD);
}

else {/* myid == @ */
for(source=1; source<numprocs; source++){
MPI Recv(message, 100, MPI_CHAR, source,
99, MPI_COMM _WORLD, &status);
printf("%s\n", message);
}

}
MPI_Finalize();

} /* end main */

83



02 MPI Basic Functions

B Sending a message

int MPI Send(void *buf, int count, MPI Datatype datatype, int dest,

int tag, MPI Comm comm);

» One process sends data to another process (or a group of processes).

> Sending a message requires: int > MPL_INT
double > MPI_DOUBLE
® \What data to send? char > MPI_CHAR

— Buf is the message address, count is the number of elements, datatype is the
element type.

® Who tosendto?

— The process with rank dest in communicator comm

® User-defined message tag (tag)
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02 MPI Basic Functions

B Receiving a message

int MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag,
MPI Comm comm, MPI Status *status);

> The receiver needs:

* The data type(datatype). size(count)and destination buffer(buf)

e Receive from which sender? ( the process with rank source in
communicator comm)

e User-defined message tag (tag)

e status is the returned status containing additional information such as the
actual number of elements received
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02 MPI Basic Functions

B Message status

» The message status (MPI Status type) stores status information about a

received message, including: typedef struct_ MPL_Status {
® MPI SOURCE: rank of the sending process int count;
- int cancelled;
® MPI TAG: tag of the received message int MPI_SOURCE;
int MPI_TAG;
® MPI_ERROR: error status int MPI_ERROR;
> It is the last parameter of MPI_Recv } MPI_Status, *PMPI_Status;

» If no information is needed, use MPI STATUS IGNORE
» The actual number of received elements can be obtained via:

MPI Get _count(MPI Status *status, MPI Datatype datatype, int *count)
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02 MPI Basic Functions

B The 6 most basic MPI functions:

» MPI_Init(...);
MPI_Comm_size(...);
MPI_Comm_rank(...);
MPI_Send(...);
MPI_Recv(...);

YV V. YV VY V

MPI_Finalize();
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03 Point-to-Point Communication

B What is point-to-point communication?
» Communication between two MPI processes

» The source process sends a message to the destination process
» The destination process receives the message

» Communication occurs within the same communicator
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03 Point-to-Point Communication

B Terminology of MPI Communication Functions

>

>

Blocking: the send/receive call waits for completion before returning;
after it returns, the resources used in the call can be reused

Non-blocking: the call can return without waiting for completion, but
that does not mean the resources can be reused immediately

Local: completion of the call does not depend on other processes

Non-local: completion depends on other processes; e.g., a sender
may wait until the receiver has received before returning

Collective: all processes in the group participate

20



03 Point-to-Point Communication

B Overview of MPI point-to-point functions

» MPI provides both blocking and non-blocking mechanisms for point-to-point
communication.

» It also supports four communication modes, referring to buffer management
and synchronization between sender and receiver:

® Synchronous mode
® Buffered mode

® Standard mode
o

Ready mode

» Combining different modes with blocking/non-blocking mechanisms yields a
rich set of point-to-point functions.
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03 Point-to-Point Communication

B Overview of MPI point-to-point functions

>

>

MPI send supports four modes; combined with blocking properties, this yields 8 kinds of
send operations in MPI.

MPI receive has only two kinds: blocking receive and non-blocking receive.

Non-blocking calls returning does not mean the communication is complete; MPI
provides completion tests mainly via MPI_Wait and MPI_Test.

MPI_Sendrecv_replace means sending and receiving use the same buffer.

Communication Mode Blocking Non-blocking
Synchronous MPI_Ssend MPI_Issend

Buffered MPI_Bsend MPI_Ibsend

Ready MPI_Rsend MPI_Irsend
MPI_Send MPI_Isend
MPI_Recv MPI_Irecv

Standard — —
MPI_Sendrecv
MPI_Sendrecv_replace 92




03 Point-to-Point Communication

B Blocking vs. Non-blocking

» Blocking communication functions: MPI Send/MPI Recv

* The process is blocked; when the call returns, the memory used in communication
can be reused.

— For send: the send buffer buf can be reused/modified; modifications do not
affect the data sent to the receiver.

— For receive: the message has been received into buf; data can be read from
it.

* The exact completion semantics depend on system buffering and message size.
* Blocking communication is easy to use but can easily cause deadlocks.

» Non-blocking communication functions: MPI Isend/MPI Irecv
* The call returns immediately; you must separately test for completion.

* Mainly used to overlap computation and communication to improve performange.



03 Point-to-Point Communication

B Blocking Communication

It is important to receive before sending,

for highest performance.
TO: MPI Recv
Once recerve
T1 .h/[PI_Send 1s called @ TO,
butter unavailable
to user
sender
returns T2
@ T2,
buffer cz
et ean T3: Transfer Complete
be reused
T4 Recerve
returns (@ T4,
butter tilled
| Internal completion is soon .

followed by return of MPI_Recv

Sending process Receiving process



03 Point-to-Point Communication

B What are buffers in MPI communication?

» Variables declared in the application, used as the starting address of buffers in message-
passing statements

» A memory area created and managed by the system (varies by implementation/user),

used to temporarily store messages during message passing; also called the system
buffer

» A user-allocated memory area used as an intermediate buffer to hold arbitrary
messages that may occur in the application

™ | (T —1)
AM] ] [ 1 B | AM]
Process P J L Process Q
User buffer |_—'t|\
S . Process P Process Q
A M ] | B |
Process P Process Q User-provided buffer
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03 Point-to-Point Communication

B Standard communication mode

» Whether send data is buffered is determined by the MPI implementation, not
by the user program.

* If data is buffered, the send returning correctly does not depend on the
receiver.

* If data is not buffered and is sent directly, the send returns correctly only
after the matching receive is executed and data reception has begun.

» Equivalent to “no fixed mode”; the concrete mode is chosen by the
implementation.

» OpenMPI uses buffered mode for short messages, and a synchronous-like
mode for long messages.
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03 Point-to-Point Communication

B Standard communication mode

Process 0 sends the message
Do not depend on Depends on the
the receiver | receiver
\4
Buffer the Do not buffer the
message message
A 4 A 4
Buffering Send directly
completed :
|
v v
Send Send completed
completed

Process 1 receives the
message

Start receiving

y

Recv completed
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03 Point-to-Point Communication

B Writing safe MPI programs

» MPI programs can easily deadlock if communication calls are ordered improperly.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.@) THEN
CALL MPI_RECV(recvbuf, count, MPI REAL, 1, tag, comm, status, ierr) A
CALL MPI_SEND(sendbuf, count, MPI REAL, 1, tag, comm, ierr) C
ELSE IF( rank .EQ. 1)
CALL MPI_RECV(recvbuf, count, MPI REAL, @, tag, comm, status, ierr) B
CALL MPI_SEND(sendbuf, count, MPI REAL, @, tag, comm, ierr) D
END IF

D Deadlock




03 Point-to-Point Communication

Writing safe MPI programs

CALL MPI_COMM_RANK(comm,
IF (rank.EQ.@) THEN
CALL MPI_SEND(sendbuf,
CALL MPI_RECV(recvbuf,
ELSE IF( rank .EQ. 1)
CALL MPI_SEND(sendbuf,
CALL MPI_RECV(recvbuf,
END IF

rank, ierr)

count, MPI REAL,
count, MPI REAL,

count, MPI REAL,
count, MPI REAL,

tag,
tag,

tag,
tag,

comm,
comm,

comm,
comm,

ierr)
status, ierr)

ierr)
status, ierr)

ve)

A
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03 Point-to-Point Communication

B Writing safe MPI programs

CALL MPI_COMM_RANK(comm,
IF (rank.EQ.@) THEN
CALL MPI_SEND(sendbuf,
CALL MPI_RECV(recvbuf,
ELSE IF( rank .EQ. 1)
CALL MPI_RECV(recvbuf,
CALL MPI_SEND(sendbuf,
END IF

rank, ierr)

count,
count,

count,
count,

MPI_REAL,
MPI_REAL,

MPI_REAL,
MPI_REAL,

tag,
tag,

tag,
tag,

comm,
comm,

comm,
comm,

ierr)
status, ierr)

status, ierr)
ierr)

(@]
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03 Point-to-Point Communication

B Bundling send and receive

» Data rotation

int MPI_Sendrecv(

void * sendbuf,
int sendcount,
MPI_Datatype sendtype,

int dest,

int sendtag,
void * recvbuf,
int recvcount,
receive

MPI_Datatype recvtype,

int source,
int recvtag,
MPI_Comm comm,
MPI_Status *  status

@ 0 @ @ ot @

//starting address of send buffer
//number of elements to send
//datatype of sent data
//destination process rank

//send message tag

//starting address of receive buffer
//maximum number of elements to

//datatype of received data
//source process rank
//receive message tag
//communicator

//returned status
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03 Point-to-Point Communication

Bundling send and receive

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.@) THEN
CALL MPI_SEND(sendbuf, count, MPI REAL, 1, tag, comm,
CALL MPI_RECV(recvbuf, count, MPI REAL, 1, tag, comm,
ELSE IF( rank .EQ. 1)
CALL MPI_RECV(recvbuf, count, MPI REAL, O, tag, comm,
CALL MPI_SEND(sendbuf, count, MPI REAL, ©, tag, comm,

ierr)
status, ierr)

status, ierr)
ierr)

END IF

RECVCALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank.EQ.0) THEN
CALL MPI_SENDRECV(sendbuf, count, MPI_REAL, 1, tag,
+ recvbuf, count, MPI_REAL, 1, tag, comm,
IF(rank.EQ.1) THEN
CALL MPI_SENDRECV(sendbuf, count, MPI_REAL, 0, tag,
+ recvbuf, count, MPI_REAL, O, tag, comm,

status, ierr)

status, ierr)
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03 Point-to-Point Communication

B Non-blocking communication

» Comparison with blocking communication

m

Return Semantics Buffer Safety / Characteristics
Access to Buffers

background (handled by the MPI
implementation).
* You must use additional calls to wait for

or test completion (e.g., wait/test routines).

the buffers
involved until
completion

Block | MPI_Send | « Blocking calls do not return until the After the call * Program design
Ing MPI_Recv | shecified operation completes. returns, it gliafe;‘to is relatively simple.
* Or, they return only after the MPI faccess/mo Tythe |, Improper use can
involved buffers
library has safely buffered (copied) the easily lead to
data involved. deadlock.
Non- | MPI_Isend | « Returns immediately; the actual After the call * Enables overlap
block | MPI_Irecv | ommunication proceeds in the returns, it is unsafe | ¢ .ompuytation and
ing to access/modify

communication.
* Program design
is relatively complex.

103




03 Point-to-Point Communication

B Non-blocking send
int MPI Isend(void™ buf, int count, MPI Datatype datatype, int dest, int tag,
MPI Comm comm, MPI Request *request)

This function only posts a send request and returns immediately.

The MPI system completes message sending in the background.

YV YV VY

The function creates a request object for this send and returns it via request.
» request can be used later by query/wait functions.
B Non-blocking receive

int MPI Irecv(void™ buf, int count, MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Request™ request)
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03 Point-to-Point Communication

B Using MPI_Wait
int MPI Wait(MPI Request™ request, MPI Status * status);

» Takes the non-blocking request object request as an argument, blocks until the
corresponding non-blocking communication completes, stores related information in
status, and frees the request object (request = MPI_REQUEST_NULL).

MPI_Request request;
MPI Status status;
int x,y;
if(rank == 0){
MPI Isend(&x,1,MPI_INT,1,99,comm,& equest)

MPI Wait(&request,&status);
} else {
MPI Irecv(&y,1,MPI_INT,0,99,comm,& equest)

MPI_Wait(&request,&status);

105



03 Point-to-Point Communication

B Using MPI_Test

int MPI Test(MPI Request *request, int *flag, MPI Status *status);

» MPI_Test returns immediately.

» If the corresponding non-blocking communication has completed, it sets the
completion flag flag = true; otherwise, it sets flag = false.

MPI_Request request;
MPI_Status status;
int x,y,flag = 0;
if(rank == 0){
MPI Isend(&x,1,MPI INT,1,99,comm,&request)
while(!flag)
MPI_ Test(&request,&flag,&status);
} else {
MPI Irecv(&y,1,MPI INT,0,99,comm,&request)
while(!flag)
MPI Test(&request,&flag,&status);
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04 Collective Communication

B Collective communication is a global communication operation in which all
processes in a group participate.

B Collective communication generally provides three functions: Data movement,
data aggregation, and synchronization

» Data movement mainly transfers data within the group.

» Data aggregation performs certain operations on the given data based on
communication.

» Synchronization ensures all processes in the group reach a consistent
execution point.

B By communication direction, collective communication can be divided into: One-
to-many, many-to-one, and many-to-many communication
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04 Collective Communication

B Collective communication

functions

B All: Deliver the result to all

processes.

M V: Variety, with more
flexible data objects and

operations

Category Function Purpose
MPI_Bcast One-to-many, data broadcast
MPI_Gather Many-to-one, data gather
MPI_Gatherv Generalized form of MPI_Gather
MPI_Allgather All-process variant of MPI_Gather (gather result
delivered to all processes)
Data
movement MPI_Allgatherv Generalized form of MPI_Allgather
MPI_Scatter One-to-many, data scatter
MPI_Scatterv Generalized form of MPI_Scatter
MPI_Alltoall Many-to-many, data permutation (all-to-all exchange)
MPI_Alltoallv Generalized form of MPI_Alltoall
MPI_Reduce Many-to-one, data reduction
MPI_Allreduce All-process variant of the above; result available on all
Data processes

aggregation

MPI_Reduce_scatt
er

Scatter the reduced result to all processes

MPI_Scan

Prefix operation (scan)

Synchroniza
tion

MPI_Barrier

Synchronization operation (barrier)




04 Collective Communication

B Data Movement

PO
P1

P2

P3

PO
P1

P2

P3

Broadcast .

Scatter

Gather
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04 Collective Communication

B Data Movement
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04 Collective Communication

B Data Aggregation
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04 Collective Communication

B Broadcast — data broadcast

0000

int MPI Bcast ( void *buffer, int count, MPI Datatype datatype, .\\ / /

int root, MPI Comm comm);

» The process designated as root sends the same

message to all processes in the communicator

int p, myrank;
float buf;

> As in point-to-point communication, the message | MPI_Comm comm;
MPI_Init(&argc, &argv);

comm.

contents are specified by the triple <buffer, MPI_Comm_rank(comm, &my rank);
count, datatype>. MPI_Comm_size(comm, &p);
if(myrank==0)
» For the root process, this triple defines both the buf = 1.0;

. MPI_Bcast(&buf,1,MPI_FLOAT,0, comm);
send buffer and the receive buffer; for all other - (&bu - )

processes, it defines only the receive buffer.
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04 Collective Communication

B Gather — data collection
int MPI Gather ( void *sendbuf, int sendcnt, MPI Datatype 6 6 6 6

sendtype, void *recvbuf, int recvcnt, MPI Datatype recvtype, int \\ / /

root, MPI Comm comm ); @

» The root process receives messages from all

processes in communicator comm. int p, myrank;
float data[10];

float* buf;

» Messages are concatenated in rank order
MPI_Comm comm;

and stored in the root’s receive buffer. MPI_Tnit(8argc, &argv);
) MPI_Comm_rank(comm, &my rank);
» recvent is the number of data elements the MPI_Comm_size(comm, &p);
root receives from each process, not the if(myrank==0)

. buf = (float*)malloc(p*1@*sizeof(float);
total number of elements received by the MPI Gather(data,10,MPI FLOAT,

root. buf,10,MPI_F10AT,0,comm);
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04 Collective Communication

B Scatter — data distribution

int MPI Scatter ( void *sendbuf, int sendcnt, MPI Datatype é 6 6 6
sendtype, void *recvbuf, int recvcnt, MPI Datatype recvtype, int \ /
root, MPI Comm comm ); \ /

» Scatter performs the reverse of Gather.

» The root process sends a different message to
int p, myrank;

all processes. float data[10];

float* buf;

» Messages are stored in order of process rank in | MPT_Comm comm;

MPI_Init(&argc, &argv);
MPI_Comm_rank(comm, &my_rank);
MPI_Comm_size(comm, &p);
if(myrank==0)

the root’s send buffer.

» Each receive buffer is denoted by <recvbuf,

recvcnt, recvtype>. buf = (float*)malloc(p*10*sizeof(float);
MPI_Scatter(buf,10,MPI_FLOAT,data,10,
» For the root process, the send buffer is MPI_F10AT, @, comm);

denoted by <sendbuf, sendcnt, sendtype>.
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04 Collective Communication

B Data Aggregation

>

>

Collective data aggregation operations allow MPI processes to perform
certain computations while communicating.

Data aggregation operations proceed in three steps:

® First, communication: messages are sent to target processes as required,
and target processes have received the needed messages.

® Second, message processing: perform the computation.
® Finally, place the processed result into the specified receive buffer

MPI provides two types of aggregation operations: Reduce and Scan.
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04 Collective Communication

B Reduce — data reduction

int MPI Reduce ( void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, int vroot,
MPI Comm comm );

» Data in each process’s send buffer (sendbuf) is
combined with the specified operation, and the

final result is stored in the root process’s receive

int p, k;
buffer (recvbuf). Float dorn oo o

> The data type of the items participating in the | float buf;

. . . MPI Comm comm;

operation is defined by datatype, and the MPT Init(&argc, &argy);

reduction operation is defined by op. MPI_Comm_rank(comm,&my_rank);

. . ) data = data + myrank * 10;

» The reduction operation can be predefined by | wp1 Rreduce(&data,&buf,1,MPI_FLOAT,MPI_

MPI or user-defined SUM, @, comm) ;

» Reduction allows each process to contribute a
vector value, not just a scalar; vector length is
defined by count.
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04 Collective Communication

B Reduce — data reduction

» MPI predefined reduction operations

Operation Meaning Operation Meaning

MPI_MAX Maximum MPI_LOR Logical OR

MPI_MIN Minimum MPI_BOR Bitwise OR

MPI_SUM Sum MPI_LXOR | Logical XOR

MPI_PROD Product MPI_BXOR Bitwise XOR

MPI_LAND Logical AND MPI_MAXLOC | Maximum value and the corresponding location
MPI1_BAND Bitwise AND MPI_MINLOC | Minimum value and the corresponding location
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04 Collective Communication

B Reduce — data reduction

» User-defined reduction operation

MPI OP CREATE(user fn, commutes, &op);
MPI_OP FREE(&op);
user_fn(invec, inoutvec, len, datatype);

» The user-defined reduction function user_fn performs:

for 1 from O to len-1
inoutvec[i] = invec[i] op inoutvec(i];

» A user-defined reduction operation does not have to be commutative,
but it must be associative.
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04 Collective Communication

B Collective communication example: numerical integration to compute Pi

» Divide the interval into n sub-intervals 7= 4]' /1 —xldx #= 4

» Evenly distribute the n sub-intervals among p
MPI processes

» Each process computes the sum of areas of 1
n/p sub-intervals

Sum the p partial sums to obtain Pi \

dx

0]+ x>

Width of each segment: w = //n

x-coordinate of the start of segmenti: d(i) =i
%
w

» Height of the small rectangle for segment i: 1

sqri(l = [d(©)]"2)

“n” sub-intervals
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04 Collective Communication

B Collective communication example: numerical integration to compute Pi

#include <mpi.h>
#include <math.h>
int main(int argc, char *argv[])

{

[...snip...]
/* Tell all processes, the number of segments you want */
MPI_Bcast(&n, 1, MPI_INT, ©, MPI_COMM_WORLD);
W = 1.0 / (double) n;
mypi = 0.0;
for (1 = rank + 1; i <= n; i += size)

mypi += w * sqrt(1 - (((double) i / n) * ((double) i / n));
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, @, MPI_COMM_WORLD);
if (rank == 0)

printf("pi is approximately %.16f, Error is %.16f\n", 4 * pi,

fabs((4 * pi) - PI25DT));

[...snip...]
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04 Collective Communication

B Barrier Synchronization

int MPI Barrier(MPI Comm comm);

» Blocks the calling process until all processes in communicator comm have
called this function.

» When MPI_Barrier returns, all processes are synchronized at the barrier.

» MPI_Barrier is implemented in software and may incur significant
overhead on some machines.
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04 Collective Communication

B Characteristics of collective communication
» All processes in the communicator must call the collective function.

> Except for MPI_Barrier, each collective function uses a standard, blocking
communication mode similar to point-to-point communication.

* Once a process finishes its participation in the collective operation, it returns from
the collective call, but it does not guarantee that other processes have completed
the collective call.

Collective communication has no message tag parameter;
The message envelope is defined by the communicator and source/destination.

 For example, in MPI_Bcast, the source is the root process, and the destinations
are all processes (including the root).
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