e

_—

a——"’."] :
Introduction to the Linux’)peratirrg ‘
System and Basics of Fundamental
Opergtions

: Linux Basic

' Learn the essential basics of Linux. Through terminal
practice, you will master common commands, the directory
structure, and file permissions, enabling you to efficiently
complete daily tasks and rapidly get started with Linux—
- providing a solid foundation for future HPC practice.

Exploring Linux Distributions

Debian

B Origin
Established in 1993 by lan Murdock, emphasizing the
principles of free software.

[> Distributions

Debian: Stable and community-driven, with slow but
reliable updates (commonly used for servers).

Ubuntu (released 2004): Based on Debian, releasing a
new version every 6 months, with an LTS (Long-Term
Support) version every 2 years (e.g., 20.04, 22.04,
24.04).

Derivatives: Kubuntu, Xubuntu, Ubuntu Server, Ubuntu
HPC.

Linux Mint: Targeted at general users, known for its
strong usability.

2

Red hat

HEOrigins
Red Hat Linux was created by Marc Ewing in
1994.

[> Representative Distributions

Red Hat Enterprise Linux (RHEL): Enterprise-
grade, offering paid support with extremely high
stability (widely used in finance,
telecommunications, and HPC).

CentOS (2004—2021): A free rebuild of RHEL; it
was once the standard for web servers.
CentOS Stream (2021—present): The upstream,
rolling-release development branch for RHEL.
Rocky Linux / AlmaLinux: Community-driven,
RHEL-compatible alternatives that emerged
following the CentOS discontinuation.

Fedora: A cutting-edge community distribution
sponsored by Red Hat, serving as a testing
ground for new features.

3

SUSE

B Origin
Originated in Germany in 1992, predating Red Hat.

> Key Distributions

Open SUSE: The community edition, available as
Tumbleweed (rolling release) and Leap (stable release).
SUSE Linux Enterprise Server (SLES): The enterprise
edition, particularly popular in Europe and the HPC
sector.

Basic commands

The following content
compiles essential commands
based on common usage
scenarios. Master the skills of
path navigation and directory
structure creation using the cd

and mkdir commands.

Permission

These permissions are divided among three categories of users:

Owner (u) : The user who created the file or has been designated as its
owner.

Group (g) : A collection of users who share the same access rights to the
file.

Others (0) : All other users on the system who are not the owner and do
not belong to the group.

There are three types of permissions:

Read (r) : Allows viewing the contents of a file or listing the contents of a
directory.

Write (w) : Allows modifying the contents of a file or creating/deleting files
within a directory.

Execute (x) : Allows running a file as a program or script, or accessing a
directory.

file permission 775 is as follows: The first digit 7: indicates that the owner
of the file has read (4), write (2), and execute (1) permissions. Read
permission (4) allows the owner to view the file’s contents. Write
permission (2) allows the owner to modify the file’'s contents. Execute
permission (1) allows the owner to run the file as a program (if it is
executable).

drwgr-xr-x 19]root root| 3400 Oct 22 14:43 dev
drwgr-xr-x. 228|root root| 20480 Oct 22 15:56 etc
drwxr—xr—ﬂ\ 3lroot root| 4096 Jan 12 2021 home

command

Basic commands

Linux commands serve as the core interface for interacting with Unix-like systems. Mastering common commands
significantly enhances efficiency in system administration and troubleshooting. The following content compiles
essential commands based on typical usage scenarios, covering fundamental functions such as file operations,
directory management, and text processing.

Basic Command Syntax

Linux commands generally follow the format: command [options] [arguments].

Forexample : Is -l /home (displays the contents of the /home directory in long format).

Is —al --time-style Usage Examples

—-al —--time-style=full-iso
drwXr-xr-x 2 user group 4096 2024-08-15 14:30:00.000000000

advanced +0000 directory

—al —--time-style=long-iso
drwXxr-xXr-x 2 user group 4096 2024-08-15 14:30 directory

-al --time-style=iso
drwXxr-xr-x 2 user group 4096 2024-08-15 directory

—al ——-time-style="+%Y-%2m-%d %H:%M:%S"
drwXxr-xXr-x 2 user group 4096 2024-08-15 14:30 directory

Basic commands

Head & tail

Use the head and tail commands to extract data from
the beginning and end of a file, with support for

[

[root@ ¢

default behavior and custom line count control.

log]# head boot.log-20251023

] Started Show Plymouth Boot Screen.

] Reached target Paths.

] Reached target Basic System.

| Found device Logical Volume 3.
File System Check on /dev/...0-ba80-441c-a

] Started dracut initqueue hook.

| Reached target Remote File Systems (Pre).

] Reached target Remote File Systems.

| Started File System Check on /dev/d...510-ba80-441c

Mounting /sysroot...

[root@

1 log]# tail boot.log-20251023

tarting Job spooling tools...
Started Command Scheduler.

7 Command Scheduler...
Started Login Service.
Started Accounts Service.
Started Dynamic System Tuning Daemon.
Started Crash recovery kernel arming.
Started /etc/rc.d/rc.local Compatibility.
ting GNOME Display Manager...

Started GNOME Display Manager.

Basic commands

Use tail -f to monitor log files in real tim'e,_mee'ting the need for
continuous tracking during system operations and maintenance.

‘tail -f /var/log/syslog’

Keep running and monitor file
changes, immediately outputting any

view real-time writes to system
logs, facilitating quick issue
identification

new lines to the terminal as they are
written. ,

Appllcatlon Management
rpm Vs yum

YUM: The Convenience

RPM: The Foundation Key Differences
A A Artred .
Package Manager /gdow og Updater Modfie 2 Bummdieg Eonding
A low-level tool for installing, A high-level tool built on RPM that RPM:Manual
uninstalling, and querying individual simplifies management with ‘
rpm® packages. automatic dependency resolution. YUM:Automatic
¥ Pros @ Pros 7 Repository Support
Direct control, offline Auto dependency resolution, RPM:No built-in
installation, lightweight. repo support, user-friendly. YUM:Yes
X w
Cons Cons A User Friendliness
No dependency resolution, no Relies on RPM, typically . (
repo support. internet-dependent. RAACOHIS
YUM:Simple
7 Key Cmd # Key Cmd
‘rpm -0, Srpm —€, Srpm —qa’, ‘yum install’, “yum remove’, = Level

rpm -U° ‘yum update’ RPM:Low -level

Backup command -

tar
Commands Key Advantages
Create a compressed backup ® Preserves File Attributes
Ltar -czvf backup.tar.gz /path/to/directory) Retains permissions, ownership, and

timestamps.

-c: Create, -z: Gzip, -v: Verbose, -f: Filename) .
® Flexible Compression

Extract a backup Works with gzip, bzip2, and xz for
- - optimal size/speed.
/path/to/restore ® Highly Versatile

-x: Extract, -C: Specify target directory T T L ——

excluding files.

List archive contents .
® Cross-Platform Compatible

(tar -tzvf barku’n tar.gz)

Standard tool across Unix, Linux, and
macOS.

Linux User, Group, and Permission Management

Users

Every interaction with the Linux system is
associated with a user account, which has unique
permissions and access levels.

Key Commands:

useradd [options] username
usermod [options] username
userdel [options] username

passwd [username]

Groups

Groups are logical collections of users, designed
to simplify permission management for multiple
users.

Key Commands:

groupadd [options] groupname
groupmod [options] groupname
groupdel groupname

gpasswd [options] groupname

Permissions

Linux uses a granular permission system to control
access to files and directories.

Permission Types:
® Read (r):View content
7 Write (w):Modify content

¥ Execute (x):Run program

Key Commands:
chmod [mode] filename

chown [user:group] filename

Filesystems and Directories

Tree-like directory structure

Linux employs a hierarchical directory structure
where all directories and files originate from the root
directory /. This unified architecture ensures clear
resource management and precise path location.

Linux's directory structure may appear complex at first
glance, but its logic is actually very clear—each directory library, &5 1%5 i
has a distinct purpose and role. Mastering these :
fundamentals is like unblocking the vital energy channels
in the system world; it empowers you to configure i = | G ; Y £
services, troubleshoot issues, and learn DevOps and bl Ve ' ol] L\J et S 4
security with far greater ease. =t =L

Filesystems and Directories

Iproc The /proc directory contains a vast collection of special files and subdirectories
that provide various system information:

The filesystem is a pseudo-filesystem (also System Information Files:

known as a virtual filesystem) that does not
occupy actual disk space, but rather resides in Iproc/cpuinfo: Contains detailed information about the CPU, such as model,
frequency, and cache size.
Iproc/meminfo: Displays memory usage statistics, including free memory, used
access kernel data structures and system physical memory, and swap space.
information. Iproc/loadavg: Shows the system's average load.
Iproc/version: Displays the kernel version, build time, and GCC version.
Iproc/uptime: Shows the duration for which the system has been running.
Iproc/cmdline: Displays the kernel command-line parameters used at boot.
Iproc/filesystems: Lists the filesystems currently loaded in the system.
Iproc/swaps: Shows the usage statistics of swap space.
Iproc/partitions: Displays disk partition information.
Iproc/bus/*: Contains information about bus devices.
Iproc/sys: Allows users to dynamically modify kernel parameters.
Iproc/[PID]: A directory named after a Process ID (PID) containing detailed
information about that specific process.

memory. It provides an interface for user space to

Filesystems and Directories

/proc

In Linux systems, commands such as free, iostat, vmstat, and sar are essential tools for monitoring system performance. Although
they focus on different resource layers, together they form a comprehensive performance analysis framework. These commands are
not located directly within the /proc directory; rather, they are standalone executable utilities. However, some of their data sources
are linked to the /proc filesystem (for instance, vmstat and mpstat read from /proc/stat).,

~]# vmstat;cat /proc/meminfo

PERES = emaryy———— SWap— —— lg———— —System— ————— Cpl——
r b swpd Free puff cache S S0 bi bo in €5 us sy 1d wa st
24 0 01154151632 319752 12166876 0 0 0 204 0 0 49 15 37 0 O

ﬁemFree: 154154788 kB I

MemAvailable: 161066452 kB

Filesystems and Directories

/Iproc Clever Use Cases

If a file is deleted using rm but is still held open by a process (such as a log process), the disk space will not be immediately released.
In fact, the file data still resides on the disk.

[root@! ~]1# 1lsof | grep deleted

pulseaudi 2948 ou REG 0,4 67108864 38481 /memfd:pulseaudio ()

null-sink 2948 2957 g ou REG 0,4 67108864 38481 /memfd:pulseaudio ({)

top 54338 5 ou CHR 136, 8 0t0 11 /dev/pts/8 (o))

top 54338 1u CHR 136,8 0to 11 /dev/pts/8 ()

top 54338 3u CHR 136,8 0t0 11 /dev/pts/8 ()

python3.1 63909 4 Ou CHR 136 L 0t0 14 /dev/pts/11 (i)

python3.1 63309 ? 1u CHR 136,11 0to 14 /dev/pts/11 ()

python3.1 63909 o Z 2u CHR 136,11 0t0 14 /dev/pts/11 (f)

squid root 3u REG 8,3 1785 5505260 /var/log/squid/cache.log-20251116 ()
squid 538 | squid 3u REG 8,3 ///)'&785 5505260 /var/log/squid/cache.log-20251116 ()
[rootl A

[root@ 1 ~]# find /procf75384ffd -1s | grep dele

2304801080 fiRS) 1T root squid 64 Jan 20 09:10 /proc/75384/fd/3 -> /var/log/squid/cache.log-20251116\ (d ted)
You have new mail in /var/spool/mail/root

[root@ 1 ~14# cp /proc/75384/fd/3 /tmp/20250127

[root@h 81 ~]1# 1s -al /tmp/20250127

AW 1 root roogel785 Jan 20 09:12 /tmp/20250127

You have new mail i‘h’%ir/spool/mail/root

[root@ = . ~]#| more /tmp/20250127

2025/11/11 14:00T09 XIOIT SeC CUrrent Directory to /var/spool/squid

2025/11/11 14:00:09 kidl| Starting Squid Cache version 3.5.20 for x86 64-redhat-linux-gnu...

2025/11/11 14:00:09 kidl| Service Name: squid
2025/11/11 14:00:09 kidl| Process ID 75387
2025/11/11 14:00:09 kidl] Process Roles: worker

Filesystems and Directories

letc/logrotate

logrotate is a log file management utility in Linux systems. It is used to automatically rotate log files to control their size and retention duration. Additionally, it can compress and delete old log files.
The main functions of logrotate include the following aspects:
1,Control Log File Size: Log files continuously grow over time. Without management, they may consume excessive disk space. logrotate periodically rotates log files to limit the size of individual files.

2,Retain Log History: Besides controlling file size, logrotate can be configured to keep a specific number of log files or for a set duration. When these limits are reached, the oldest log files are deleted or compressed, thus

maintaining a history of logs.

3,Prevent Performance Issues: Excessively large log files can slow down read and write operations, potentially impacting system performance. Regular rotation prevents files from becoming too large, ensuring the system runs

smoothly.
4,Compress Old Log Files: logrotate can compress archived log files to save disk space. Compressed files can be further archived or transferred for subsequent analysis.

5,Automated Management: logrotate is configured via configuration files, making log management fully automated. You can customize rotation conditions and behaviors to suit specific requirements.

fon e R e [root(@ logrotate.d]# cat /etc/logrotate.d/tomcat
rotate log files weekly 3

menthly [var/log/tomcat/catalina.out {

keep 4 weeks worth of backlogs

rorate © copytruncate

create new (empty) log files after rotating old ones

:ri::edate as a suffix of the rotated file wee}{ly
el rotate 52 «mmm—

uncomment this if you want your log files compressed

#compress Compress '
RPM packages drop log rotation ir rmation into this directorw . .
include /etc/logrotate.d mlSSlngok

no packages own wtmp and btmp —— we'll rotate them here
demad oo e o te 0644 t £ t
i CredLe omca omca
create 0664 root utmp
minsize 1M }
rotate 6

Linux Shell

The Linux shell is a command-line interface that acts as an intermediary between the user and the operating
system’s kernel. It interprets commands entered by the user, executes them, and returns the results—enabling
direct control over the system’s resources, files, processes, and services.

Unlike graphical user interfaces (GUIs), the shell operates through text-based input, making it powerful,
scriptable, and highly efficient—especially for automation, system administration, and remote server

management.

Common Types of Shells

Bash (Bourne Again Shell): The default shell on most Linux
distributions; feature-rich and widely used.

Zsh (Z Shell): Offers advanced customization, auto-completion, and
theming (popularized by frameworks like Oh My Zsh).

Fish (Friendly Interactive Shell): Designed for usability and
interactive features with syntax highlighting.

Dash, Ksh, Tcsh: Other shells used in specific environments or for
compatibility.

Key Features

Command execution: Run programs, scripts, and utilities.
Scripting: Automate tasks using shell scripts (.sh files).

Pipelines & redirection: Chain commands (|) and control
input/output (>, >>, <).

Environment control: Manage variables, paths, and session
settings. Job control: Run, pause, and manage
background/foreground processes

Shell - grep

grep Command: From Basic to Advanced

@ Search for a String iy Regular Expressions

Searches for the exact string "error" in file.txt. Lines starting with "Error:" (using * anchor).

grep "ervor' file.txt grep "“Error:" error.log

B Case-Insensitive Search sa Recursive Search

Ignores case, matching "Error", "ERROR", etc. Search in current directory and subdirectories.

grep —i "ervor' file.txt grep -r "TODO" .

Bl Show Line Numbers ol Pipe with Other Commands

Displays the line numbers of matching lines. Combine with ps to find nginx processes.

grep -n "warning" file.txt pps aux [grep nginx

grep is essential for developers & sysadmins. Master it to save hours of manual searching.

Shell - awk

awk Command: From Basic to Advanced

Basic Commands Advanced Usage
7/ Print Specific Columns ia Associative Arrays
awk {print $1, $4} data.txt awk '{count[$1]++} END {..} access.log
Prints the 1st and 4th fields of each line. Counts occurrences (e.g., IP addresses).
®! Custom Delimiter # Built-in Functions
awk -F, '{print 32, $3} data.log awk {print toupper(30)}' text.txt
Uses “-F," to specify comma as separator. String manipulation (e.g., uppercase).
@ pattern Matching &) Conditionals & Loops
awk 'Verror/ {print $0} log.txt awk {if ($3 > 90) print ..} grades.txt

Prints lines containing the pattern 'ervor'. Filter and process based on conditions.

Shell - sed

awk Command: From Basic to Advanced

Basic Usage Advanced Usage

4 Substitute Text ® Address Ranges

Replace first occurrence of "old" with "new". Apply command to lines 5 through 10.

| sed 's/old/new/' file.txt] [sed '5,10s/old/new/q' file.txt
ek Global Substitution ® Append/Insert Text

Replace all occurrences of "old" with "new". Append (a) or Insert (1) text around matches.

[sed 's/old/new/q' file.txt] [sed '/pattern/a\text' file.txt
L Delete Lines A Regular Expression Groups

Delete lines that match the pattern. Reference groups with \1, \2, etc.

(sed '/pattern/d' file.txt J [sed 's/\N(*\) \(*\)/\2, \1/"

Mastering sed significantly boosts productivity in text processing and shell scripting.

Linux Shell Programming: if

if
Used for conditional execution, allowing the

script to make decisions based on test
outcomes.

()\
if [condition]; then
Code if true
elif [cond T; then
Code if false
else

Shell - programming

for

Iterates over a sequence of items (words,
numbers, files) and executes code for each.

G # Fallback Y,
fi

Example:

read -p "Num: " n
if [$n -gt 10]; then echo "Greater";
fi

2
for var in item1 item2 ...; do
Code for each item
done
S
Example:

for file in *.txt; do
echo "Processing $file"
done

for while

while

Executes code as long as a specified condition
remains true, useful for reading input.

while [condition T; do
Code while true
done

. J

Example:

count=1
while [$count -le 5 T; do
echo "Count: $count”; ((count++))
done

Linux Shell

System monitoring script: Monitor real-time data and generate status reports

By collecting basic resource data, such as top and iostat, and using
commands like awk , sed to extract key values, Generate system basic
report. the monitored data is written into the log for backup purposes.

07

Integrate notification functions, send reports regularly, allowing system
administrators to be informed promptly. Issue warnings when thresholds
are exceeded. Optimize scripts for long-term monitoring to ensure

service quality

Crontab Command in Linux: The Ultimate Guide

Syntax

*xxxx command_to_execute

Ve

Minute (O-59):The minute when the job runs.
Hour (0-23):The hour when the job runs.
Day of Month (1-31):The day of the month.
Month (1-12):The month of the year.

a8 Ke o

Day of Week (0-6):Day of week (O or 7 =Sunday).

Special Characters
: Wildcard, means "every".
»: Specifies a list of values (e.g., 1,3,5).

<>

- /: Specifies range or step (e.g., 1-5, */15).

Commands
crontab -e: Edit crontab file.

crontab -[: List crontab entries.

crontab -r: Remove crontab file.

crontab -u [user] -e: Edit another user's crontab.

Examples
5 * * * % Run hourly at minute 5.
O O * * *: Run daily at midnight.

O 2 * * 0: Run every Sunday at 2 AM.

® Pro Tip:Use absolute paths and redirect output to a
log file for debugging.

Linux security

Linux PAM Security: Hardening Your Authentication

PAM (Pluggable Authentication Modules) is a flexible framework that
decouples authentication from applications, allowing centralized
management of how users are authenticated for services like “sshd’,
‘login’, and “sudo’.

o° Enforce Strong Passwords

Use '‘pam_pwquality.so” for complexity and ‘remember=5" to
prevent reuse.

x Limit Failed Logins

®% Modules Lock accounts with “pam_faillock.so™ after 5 attempts for 15

. _ minutes.
Independent ".so" files performing specific tasks (e.g.,

‘pam_unix.so"). % Restrict User Access
Ej Configuration Files

Control login sources with ‘pam_access.so” and
Located in ‘/etc/pam.d/" for each service's auth stack. ‘/etc/security/access.conf”.

Example: system-auth-ac

password requisite pam_pwquality.so retry=3 minlen=12 dcredit=-1 ucredit=-1 [credit=-1 ocredit=-1

Linux security

Policies & Configuration

r.a User Authentication

* SSH Key Authentication
* Strong Password Policies

* Multi-Factor Authentication

m Network Security

* Firewall (UFW/Iptables)

* Port Hardening & Service Minimization

* Network Segmentation

. System Hardening

* Kernel Parameter Tuning
* Secure Filesystems
*System vulnerability patch(update)

EE Data Protection

* Secure Backup Strategies (rsync,tar)
* File-level Deletion (shred)

@ Monitoring & Auditing

* Centralized Log Management
* Intrusion Detection

* Regular System Audits

aa Continuous Security

» Automated Updates & Patching
* Security Awareness Training

* Incident Response Planning

@ /Adv . Linux & HPC

/
/

¢ . / Linux, with its open—-source, stable, and customizable
features, perfectly meets the stringent requirements of HPC
Eor the underlying operating system. It not only supports
global supercomputers but also deeply integrates into the
operation, maintenance, and management ecosystem of HPC.
‘The two complement each other, forming the cornerstone of
modern high performance computing.

Why choose Linux

Four core advantages of Linux making it the preferred choice for HPC

01

Freedom and open

Linux is a free and open-
source Unix-like operating
system, allowing users to
freely access, modify, and
distribute its source code,
providing infinite possibilities
for customization needs in
the HPC field ,

02

Stability and security

Linux is renowned for its
exceptional stability and robust
security. Its kernel design is
robust and updated promptly,
ensuring an uninterrupted and
stable operating environment
for HPC clusters.

03

free

Compared to proprietary
systems, Linux is free of
charge, significantly reducing
the cost of building and
operating large-scale HPC
systems. At the same time,
the abundant ecosystem of
free and open-source
software further saves
software investment ,

04

powerful group

With a vast community of
developers worldwide, who
continuously contribute code,
fix bugs, and develop new
features, the continuous
progress and vitality of Linux
technology are ensured ,

HPC& Linux

The best choice

1

Integration with open-source systems

HPC requires continuously optimized software.
The open-source nature of Linux allows
researchers and developers to directly delve
into the operating system and software kernel
for customization, optimization, and integration.

hardware support

Linux supports various hardware architectures ranging from x86
to ARM, enabling flexible adaptation to diverse computing nodes,
storage, and network devices in the HPC field

Excellent parallel support

The Linux kernel itself supports multitasking, multithreading, and
symmetric multiprocessing (SMP), providing a solid foundation for
parallel computing frameworks such as MPIl and OpenMPI ,

Mature cluster management

The mainstream cluster management systems (such as LSF,
SLURM, PBS) and resource schedulers are all developed based
on Linux, achieving efficient management and scheduling of
computing resources.

Linux applications in HPC

The specific applications of Linux in high-performance
computing, including core components and technologies
such as resource scheduling, parallel computing
frameworks, and system monitoring.

HPC Job Scheduling Systems

Core Functions, Mainstream Software & Scheduling Policies

Core Functions

O

8

Job Lifecycle Management

Submission, queuing, execution, termination.

Resource Management
Allocate CPUs, GPUs, memory, I/O.

Queue Management
Maintain queues and prioritize jobs.

Monitoring & Reporting

Track progress, utilization, health.

Policy Enforcement

Fair share, access control, accounting.

Mainstream Software

Slurm

Open-source standard, highly scalable.

LSF (IBM)
Enterprise-grade, high reliability.

PBS

Flexible policy engine, workflows.

Scheduling Policies

¢, FCFS

Simple, fair, but may be inefficient.

't Preempt
High-priority tasks preempt low-priority job.

1l Fair-Share

Ensures equitable access over time.

1 Backfilling

Maximizes cluster utilization.

HPC Job Scheduling Systems

High-Performance Computing Job
Scheduling Principle Diagram

Job Submission

User submits job
with resource
requirements

Step 1: User submits
job script

Job Queue

Resource ;
Scheduler Execution Nodes

° g L]
SR N €
N

Waiting jobs
sorted by

Step 2: Jobs enter
queue by priority

Algorithm select Allocates Jobs run on
jobs based on CPU/GPU assigned nodes
resource availablity memory

Step 3: Scheduler Step 4: Resource Step 5: Job executes
matches with free manager assigns on nodes
resources nodes

— ® upec System Administration

| System management is the cornerstone of High-Performance
Computing (HPC).

It ensures the efficient operation of HPC clusters, which consist of
computing nodes, high-speed networks, file systems, and scheduling
- systems.

maintenance team is responsible for managing job scheduling,
machine health, fault maintenance, and optimizing hardware
performance. Without their support, HPC systems will face issues
such as low resource utilization and research delays

¢ ®
........

8 ¢ ®

.....

L]
''''''
..............
.............

)
0 ® ¢ ®
.....
)

Hardware Management: The Foundation of HPC

= Computing Nodes

Multi-core CPUs & accelerators (GPUs) for parallel
processing tasks.

63 High-Speed Interconnect

Low-latency networks (InfiniBand, OPA) for efficient
node communication.

=] Storage Systems

Scalable solutions (Lustre, GPFS) to handle massive
/0 requirements.

¥ Power & Cooling

High-Speed InfiniBand Interconnect

Software Management

1) 0pemting Sgstem

A lightweight, optimized Linux distro (e.g., CentOS,
RHEL) providing a stable foundation.

Device Drivers

e

Low-level software enabling OS-hardware
communication, critical for GPUs and high-speed
networks.

A\ Middleware & Libraries

MPI, compilers (GCC, Intel), and math libraries
(BLAS, LAPACK) form the application backbone.

......

Ty

__ 8

"-\“am'\-ﬁ":::

sa Application Management

Tools for deploying, updating, and maintaining user
apps across the cluster.

Resource Management: Maximizing Utilization & Efficiency

=

Cluster Provisioning

Automated tools for efficient deployment and
configuration of OS and software across nodes.

Monitoring & Telemetry

Real-time tracking of system health, resource
utilization, and application performance.

T4

Performance Optimization

ldentify bottlenecks and optimize resource allocation
using profiling tools.

Dynamic Resource Allocation

Flexible scaling based on demand to ensure critical
workloads get resources.

r

node-exporter Host

ostname plime Memory
- week 1551
[P ca week 7
PR s week

- . week

Bt . week
A week

jverall total Sm load & average CPU used%

Allv Instance | & 1ovalocal ¥ NIC | Allv Interval | 2m >~

ed JOB), Host: k8s-jmeter-1.novalocal, Instance: k8s-jmeter-1.novalecal

Server Resource Overview [JOB: node-exporter, Total: 8] -

% Gig 3.80% 4657 GiB
e H 372.5GiB
H Gig 3.70% § :
8| L > _ 279468
2 E 4768 3.60% &]
812 é 2 186.3GiB
% 2 GiB 3.50% = GiB
g 2
= 0B 32.40% & B
% g 08:00 00 12:00 00 16:00 00 00 00 00 14:00 16:0}
o ot Total arent: 88.7 GiB — Total Used Current: 56.5 GiB Total Current: 383.8 Gi8 — Total Used Cument: 162.7 GiB
— Overall Average urrent: =
[Ké wmatae s © Disk Space Used Basic(EXT?/XFS) CPU iowait Internet traffic per hou
Device Filesystem Mountedon ~ Size Avail Used 0.27% __ e
z
[devfmapper/centos-root xfs 1 476i8 326 GiB _ Y 954MiB
i = 2
[devudal xfs Iboot 1014MB 7105ME - Exekiicesl § oo I
24.4 mil = 954MiB
= 268
Total filefd E
2 e
1608785 = 0800 1000 1200 140}

Memorv Basic

Real-time Resource Monitoring Dashboard

® Job Schedulers

Core software (Slurm, PBS) managing job submission,
queuing, and execution.

HPC Job Scheduling System:
2 Jobs Scheduling & Preemption

Job Queue Resource Allocation

CPU 72 Queue Management

Job A Preemption Trigger

(Normal - Organizing jobs by priority or resources for efficient
- Scheduler e,

Priority) utilization.

Running
Job B Wovrkload Orchestration

(High *]
Priority) _ _
Checkpoint Saved Managing complex interdependent workflows to run

in the correct order.

Preemption Release Fairshare & Policies

Allocating resources fairly to prevent monopolization
of the cluster.

Core Roles

'Systém Morﬁitorinéy &
7x24 oversight

- Tund InardwaTe/ softare

upti

Maintenance

tability and maximize

Performance] Optimization

efficiency.

Security & Complianc
Protetting sensitive ddta a
1

for peak computational

7

Use Suppo'ylt & Enab

ement

Assisting users to effectively leverage

supedcomputer capabilities.

nd critical infrastructure.

Suloercomputer Management ||| |

Key Benefity | ||

il Maximized ROl | .

:

[l

Extends hardwarg liféspan and increases system

utilization. 1

Accelerated Innovation

i

Shortens the pat to sclent(c{ dl:SCOVE givia faster

simulations. }

Reduced Operatio Lal Costs

Prevents costly downdgime ar 01 emerge

\CcY repairs.

|

Enhanced Reliabihtig &i{eputat

1

on

Attracts top talent and fostdrs collabokation.

